U of T Mining and Mineral Engineering ranks top 10 in the world

Psychology research at the University of Toronto is ranked second in the world – just after Harvard University – in a new ranking of subjects by the independent Shanghai Ranking Consultancy.

In addition to psychology, U of T also ranked third in medical technology, fifth in public health, sixth in human biological sciences and ninth in biotechnology, finance, and mining & mineral engineering in the report.

The 2017 Shanghai Subject Ranking, released earlier this week, surveyed more than 500 top global universities in 52 subject areas.

Overall, U of T ranked in the top 25 for 25 different subject areas – only four universities were ranked in more subjects (Harvard, Stanford, Berkeley and MIT).

Among Canadian universities, U of T was ranked first (or tied) in 28 of the 46 subjects it was ranked in.

“It’s wonderful to see the continued recognition that the University of Toronto is one of the few institutions in the world with strength across the full breadth of areas of scholarship,” said Vivek Goel, U of T’s vice-president of research and innovation.

The 2017 Shanghai Subject Ranking looks at natural sciences, engineering, life sciences, medical sciences and social sciences, with the majority of its subjects falling under engineering. It uses bibliometric data as the source for the majority of its indicators, complemented by data on faculty honours and awards in selected subjects.

Each of the subjects have a differing mix of indicator weightings, thresholds for inclusion and depth to the rankings depending on the characteristics of the data.

The Shanghai Ranking Consultancy is also the publisher of the influential Academic Ranking of World Universities (ARWU), commonly known as the Shanghai Ranking. This year, the ARWU ranked U of T 27th in the world.

In March, a similar report on global subject rankings by software company QS Quacquarelli Symonds placed U of T in the top 10 globally in nursing (6th), sports-related subjects (6th), anatomy & physiology (8th), geography (9th), computer science (10th) and education (10th). Medicine, anthropology and religious studies just missed the top 10 list, landing in 11th place.

Among Canadian universities, U of T was first in all five of the broad subject areas and first in 32 of the 43 subjects in which the university was ranked by the QS World University Rankings by Subject.

Globally, the results place the University of Toronto among the world’s elite institutions in all five subject areas and in 43 of the 46 subjects surveyed. The university scored even higher when public higher education institutions alone were counted in the subject areas ranked.

Overall, the University of Toronto continues to be the highest ranked Canadian university and one of the top ranked public universities in the four most prestigious international rankings: Times High Education, QS World Rankings, Shanghai Ranking Consultancy and National Taiwan University.

This article originally appeared on U of T News.

Nine Engineering professors and alumni inducted into the Canadian Academy of Engineering

Nine Engineering professors and alumni inducted into the Canadian Academy of Engineering

Professor Robert Andrews’ work has lead him to solve real-world problems for drinking water safety.

Nine members of the U of T Engineering community have been inducted as fellows of the Canadian Academy of Engineering (CAE). Professors Robert Andrews (CivE), Sanjeev Chandra (MIE), Tom Chau (IBBME), Heather MacLean (CivE) and Wei Yu (ECE), along with alumni Perry Adebar (CivE MASc 8T7, PhD 9T0), Mark Hundert (IndE 7T1), Christopher Pickles (MMS 7T4, MASc 7T5, PhD 7T7) and John Young (MMS 7T1, MIE MASc 7T4) are among the CAE’s 50 new fellows. The CAE is a national institution through which Canada’s most distinguished and experienced engineers provide strategic advice on matters of critical importance to Canada. The new CAE fellows were inducted on June 26 in Ottawa, as part of the Academy’s Annual General Meeting and Symposium.

“The Academy’s recognition of so many faculty and alumni attests to the tremendous contributions U of T Engineers are making in Canada and around the world,” said Dean Cristina Amon. “It also demonstrates their impact in all aspects of the engineering profession — from engineering education to fundamental research to technology transfer, commercialization and consulting.”

Robert Andrews holds the NSERC Industrial Research Chair in Drinking Water Research, working with industry partners who serve over four million people in Southern Ontario. His collaborations with municipalities have allowed him to solve real-world problems that have a direct impact on the safety of Canada’s drinking water supply. An expert in drinking water treatment, Andrews is a member of several decision-making committees and advisory councils in Canada and the United States. His work has been recognized with prestigious awards from the Engineering Institute of Canada, the Canadian Society for Civil Engineering, and the American Water Works Association, among others.

Sanjeev Chandra is co-founder of the University of Toronto’s Centre for Coating Technologies, one of the world’s leading research centres in the area of thermal spray coatings. He has collaborated with research groups and industrial partners around the world in the development of cutting-edge technology in this area. Chandra’s work has been applied in the fields of spray coating and forming, spray cooling, ink jet printing, agricultural spraying and forensic science. He is a fellow of the American Association for the Advancement of Science, the American Society of Mechanical Engineers, and the Canadian Society for Mechanical Engineering, and received the NSERC Brockhouse Prize.

Through his research at Holland Bloorview and U of T, Tom Chau has developed assistive technologies which give children and youth with severe physical limitations the ability to communicate independently. Chau created the award-winning Virtual Music Instrument, which allows individuals with disabilities to express themselves through music. Additionally, he has pioneered optical brain-computer interfaces which allow nonverbal individuals to communicate through thought alone. Chau is a fellow of the American Institute for Medical and Biological Engineering and the recipient of several awards. In 2011 he was named one of 25 Transformational Canadians by The Globe and Mail.

Heather MacLean is an internationally recognized leader in sustainable systems analysis, including life cycle assessment and its application to energy systems and vehicles. Her work has led to sustainability assessment and life cycle assessment being viewed as critical tools by industry, government and other organizations, and has guided regulations such as California’s Low Carbon Fuel Standard. MacLean is an advisor to the World Bank/World Resources Institute for Sustainable Transportation. She is a fellow of the Engineering Institute of Canada and recipient of the Canada Mortgage and Housing Corporation Excellence in Education Award for Promotion of Sustainable Practices.

Wei Yu has made highly influential contributions to the field of information theory and communication engineering. His research addresses fundamental limits of information transmission in communication networks. Yu proposed dynamic spectrum management methods that have been used in millions of digital subscriber lines worldwide and also contributed significantly to the capacity analysis and optimization techniques for multiuser multiple-input multiple-output (MIMO) wireless communication channels, which are widely used in cellular networks. Professor Yu is an IEEE fellow, recipient of the NSERC E.W.R. Steacie Memorial Fellowship, and a Thompson Reuters Highly Cited Researcher.

Perry Adebar has made important contributions to the profession and practice of engineering in Canada. An award-winning educator, he is known for presenting a strong connection between theory and engineering practice, and his views are highly respected by industry. He is head of UBC Civil Engineering, and was previously associate dean of Applied Science at UBC. His research has had a direct impact on the seismic design of high-rise concrete buildings in Canada. Professor Adebar has provided engineering advice to several consulting engineering firms. He is a director of the Structural Engineers of B.C. and a member of the Canada TF-1 HUSAR Team.

Mark Hundert is a pioneer in the application of industrial engineering and operations research practices in order to improve the delivery of health care in Canada. He has helped to introduce principles and methodologies to improve the efficiency and effectiveness of our hospitals and other health care organizations. Among his many contributions in this field, Hundert spearheaded the development of a national database benchmarking the efficiency and quality of care in Canadian hospitals, which has been an essential tool in identifying and addressing areas needing improvement in the Canadian health care system. He received the Ontario Professional Engineers Management Medal in 2008.

A leading authority on microwave heating for metallurgical applications, Christopher Pickles has been a pioneer in the development of microwaves for processing ores, precious metal residues, and waste materials. Other major contributions include the use of extended arc plasma reactors for the treatment of electric furnace dusts and generation of ferro-alloys. Professor Pickles has presented short courses for industry, mentored close to 70 researchers, published over 170 papers, coedited five conference volumes and coauthored a textbook on Chemical Metallurgy. He is a fellow of the Canadian Institute of Mining, Metallurgy and Petroleum and has won national awards.

John Young has been eminently successful in the generation and application of new knowledge associated with primary steelmaking operations. He has provided exceptional engineering leadership in simulation modelling and commissioning of numerous steelmaking plants within Canada and abroad. He has coauthored a textbook entitled “Metallurgical Plant Design” and made significant contributions to the training of engineers in industry, as well as engineering students at both McGill and U of T, where he serves as an adjunct lecturer and instructor for MSE 450: Plant Design for Materials Process Industries. Throughout his career, Young has been an excellent ambassador for the engineering profession. He has received a number of high profile awards from AIME’s Iron and Steel Society.

Originally appeared on U of T Engineering News by Carolyn Farell | Posted on June 27th, 2017

 

New partnership establishes a Canadian teaching city for engineering students

Optimizing traffic flow between the City of Oshawa, at right, and Toronto, lower left, is one challenge that Master of Engineering students in the Cities Engineering and Management program at U of T will study in the newly established ‘teaching city.’ (Image: Google Maps)


Medical doctors learn in immersive teaching hospitals — and now U of T Engineering students will have their own immersive learning opportunities within a real-life teaching city. Later this year, the City of Oshawa will become Canada’s first-ever living laboratory for urban research, allowing students to probe complex municipal issues and test practical solutions for the future.The University of Toronto’s Faculty of Applied Science & Engineering is teaming up with the Canadian Urban Institute, the University of Ontario Institute of Technology, Durham College and the City of Oshawa to realize this first-of-its-kind partnership. As a ‘teaching municipality,’ Oshawa will connect engineering students with city staff, testing new technologies and methods on the ground and in real time.

“This is a new era for engineering education,” says Professor Brent Sleep, chair of the Department of Civil Engineering. “With this innovative partnership, through internships and research opportunities U of T Engineering students, including students in the Master of Engineering in Cities Engineering and Management (MEngCEM) program, will study and resolve real-life problems in today’s urban setting.”

A memorandum of understanding between the partners was signed June 5, 2017 at the Arts Resource Centre in downtown Oshawa. The coalition continues to invite participation from a variety of industry partners, which will expand the potential application areas for innovations studied in the city, including market-focused solutions for commercialization.

Moving beyond textbooks and laboratories, this dynamic urban lab will bring students and researchers closer to emerging trends. Potential areas for exploration could extend from current U of T studies in intelligent transportation systems, sustainable urban infrastructure including air pollution and health, drinking water systems and building sciences. The partnership will also seek to deepen evidence-based policy development and research-driven innovations from U of T MEngCEM students.

“Access to real-time urban data and systems will provide significant insights and transformative opportunities to assess problems and identify scalable and sustainable solutions for tomorrow,” says Sleep. “Learning outside lecture halls encourages students to interact with a multitude of stakeholders, learning to support and interact with policymakers, residents and their future colleagues.”

As urbanization intensifies the pressure on cities — from increased demand on utilities, to greater need for emergency services and schools, to urgent need for traffic and transit upgrades — a new generation of highly trained engineering talent will guide and manage new technologies, policies and practices to meet the needs of citizens across Canada and around the globe. The first student cohort will begin studying this experiential teaching municipality in 2018.

Students win grand prize in the 2017 U.S. Department of Energy’s Race to Zero design competition

The team beat out over 50 submissions from four countries during this eight-month competition. The project focuses on building sciences, green energy initiatives and sustainable city development

Creating homes in the forgotten Toronto back laneways, LaneZero’s design offers stylish living driven by sustainable development.

Downtown location with loft-style, open-concept living featuring a bright kitchen, second-floor balcony and no energy bills for life.

This net-zero listing is a surprising addition to the rear garages and often neglected buildings dotting Toronto back alleys; but for a city facing a housing crunch this design contest winner might be the sustainable solution needed.

Recently Jason Gray (CivE MASc student) and U of T alum Kevin Wu Almanzar (CivE 1T6) teamed up with students from Ryerson to take home the grand prize in the 2017 U.S. Department of Energy (DOE) Race to Zero competition. Tackling green energy and building science challenges, the team addressed some unique problems plaguing Toronto with their market-ready design concept entitled, LaneZero.

LaneZero is a commercially viable design providing current homeowners the ability to transform pre-existing vehicle storage units to net-zero, single-family dwellings. Common garages are an untapped potential, which could transform our city.  With City Hall actively pursuing sustainable transportation alternatives, current forecasts suggest the need for garages will dramatically decrease.

Standing out from its competition, LaneZero responds to property owners’ needs today. The design offers a modern living space, affordable construction and great returns on initial investment given the net-zero mechanical performance.

“LaneZero shows that there is a viable option to help mitigate Toronto’s housing crisis. The fact that it can be competitively built while being net-zero, is in itself a large achievement. We expect LaneZero will encourage and help inform future Toronto by-law changes, which have been slow to develop and evolve,” Wu Almanzar notes.

Working within existing city landscape and infrastructure, the team used the laneways of Christie Pits as inspiration, and set out to identify a net-zero energy solution for the neighbourhood.

Prospective LaneZero sites are small and forced the team to revaluate traditional green building strategies. In typical low-energy homes, the necessary insulation needed in the building envelop to minimize thermal bridging requires walls up to three times larger than conventional building methods. The LaneZero design balanced the home’s footprint with wall thickness for optimal living through energy modelling and parametric analysis.

 

LaneZero’s winning architectural rendering of their market-ready Toronto laneway design.

“Our design serves to activate the laneways of Toronto and foster a community in spaces that were historically underused,” said Gray. “The laneway concept gives homeowners the opportunity to establish income properties on their existing lots and provides housing alternatives in the Toronto market. For those that don’t want to go the condo route – this is a great housing option.”

With 15 team members from a variety of fields like architecture, building science and mechanical engineering the students collaborated on every decision and development phase. From competing design needs requiring compromise to conflicting construction requirements, the team harnessed the complex, iterative process to spark ingenuity and innovation.

After weeks of comparisons and adjustments, the team obtained net-zero energy unlike other submissions who failed to meet the energy target. Using modelling software to determine an optimal design, the team considered the quantity of daylight penetration year-round, environmental impact and overall building costs.

Gray and Wu Almanzar spearheaded the envelope system design to minimize heat loss, protect the structure from damage, and help ensure year-round comfort. They worked alongside the architecture, mechanical, and indoor environmental quality teams to ensure comprehensive and fully integrated systems.

One creative and interesting consideration the team addressed was the limited roof space on laneway homes for solar panels. They employed passive solar and mechanical design concepts to take advantage of free energy and technological enhancements.

“For example, LaneZero leveraged the low-angle sun in the winter time with large south facing windows to maximize free heat gains while offsetting the heating demand. Appropriate shading for the summertime limited the amount of direct solar radiation entering the building and lowered the cooling demand,” explains Gray. “On the mechanical side, using an innovative heat pump design, the heating, cooling, and domestic hot water were all provided in a highly energy efficient manner. Other strategies, such as a large amount of insulation for the envelope assemblies, continuous thermal layers, and energy efficient appliance selection contributed to achieving the net-zero goal.”

The design lauded for its architectural finesse, comprehensive building science analysis and a unique vision for the future of sustainable cities, won in the Attached Housing category and the grand prize across all categories. The team is investigating future expansions and potential opportunities for project applications.

U of T Engineering welcomes four global Pearson scholars

Originally posted on U of T News  |  May 30th, 2017 by Engineering Strategic Communications

 Deborah Emilia Solomon, second from left, is one of 37 top students from around the world receiving the inaugural Lester B. Pearson International Scholarship, which covers tuition, books, incidental fees and residence costs for four years. She is joining Chemical Engineering in Fall 2017. (credit: Johnny Guatto).
Deborah Emilia Solomon, second from left, is one of 37 top students from around the world receiving the inaugural Lester B. Pearson International Scholarship, which covers tuition, books, incidental fees and residence costs for four years. She is joining Chemical Engineering in Fall 2017. (credit: Johnny Guatto)

 

 

 

 

 

 

Deborah Emilia Solomon (Year 1 ChemE) came home one day to the good news that she had received one of the inaugural Pearson scholarships, a new prestigious and competitive U of T award for undergraduate international students.

“I was overjoyed. I just started crying,” she said. “I was going through so many emotions at that moment because I struggled so much wondering where I would go next.”

This fall, Solomon, a student from India, will join three other recipients of the Lester B. Pearson International Scholarships in first year at U of T Engineering. Named after Canada’s 14th prime minister, Nobel Peace Prize laureate and U of T graduate Lester Bowles Pearson, the scholarship recognizes exceptional academic achievement, creativity, leadership potential and community involvement. It covers tuition, books, incidental fees and residence costs for four years.

U of T President Meric Gertler, members of the Pearson family, Vice-President and Provost Cheryl Regehr and consular officials welcomed four of the Pearson scholars in a special announcement Tuesday, May 30, 2017 at the Lester B. Pearson Garden for Peace and Understanding at Victoria University in the University of Toronto, where Pearson once served as Chancellor.

“In the decade or so leading to the Centennial of Canada’s Confederation, Lester Pearson raised this country’s profile in the international community. Now, as we mark Canada’s sesquicentennial, the scholarships that bear his name will heighten this university’s global reputation as a force for good in every field of human endeavour,” President Gertler said.

“In an increasingly polarized world, in which many countries are turning inward, Canada has renewed its commitment to openness and multilateralism in service of the common good – and Canada’s leading university is committed to doing the same,’ he said. “The Lester B. Pearson International Scholarships will stand as a testament to that commitment.”

John Hannah, a U of T alumnus and grandson of Lester Pearson, said the new Pearson scholars would bring unique perspectives to campus. “I share my grandfather’s conviction that education is a powerful instrument for generating peace and understanding in the world,” he said.

See the full list of 2017 Pearson scholars

Meet the four Pearson scholars joining the Faculty of Applied Science & Engineering:

Deborah Emilia Solomon.Deborah Emilia Solomon

Home country: India
Joining: Chemical Engineering

“‘When something is important enough, you do it even if the odds are not in your favour,’ said Elon Musk and that, perhaps, has been a guiding factor of my life…By nature, I love to inquire and question the way things work, never compromising or settling for second best.”

 

Sheng Lee.Sheng Lee

Home country: Malaysia
Joining: Civil Engineering

“Having grown up in a tropical, multicultural, and colourful country – Malaysia – I have no wonder shaped a warm and outward-looking nature. And here I am, as a typical friendly Malaysian, eager to say hi to all of you!”

 

Chelsea John-Williams.Chelsea John-Williams

Home country: Trinidad and Tobago
Joining: General First Year

Chelsea is excited to immerse herself into university life and participate in the various programs and activities the university has to offer. She plans to leverage her degree to become an entrepreneur in her country.

 

Mubtaseem-Zaman.Mubtaseem Zaman

Home country: Bangladesh
Joining: Engineering Science

Mubtaseem loves contemplating complex physics questions, such as the existence of parallel universes, tinkering with robots, or appreciating poetry. He is a huge basketball fan and tries to bring joy to all he does and remain young at heart!

 

With files from Geoffrey Vendeville