Nine Engineering professors and alumni inducted into the Canadian Academy of Engineering

Nine Engineering professors and alumni inducted into the Canadian Academy of Engineering

Professor Robert Andrews’ work has lead him to solve real-world problems for drinking water safety.

Nine members of the U of T Engineering community have been inducted as fellows of the Canadian Academy of Engineering (CAE). Professors Robert Andrews (CivE), Sanjeev Chandra (MIE), Tom Chau (IBBME), Heather MacLean (CivE) and Wei Yu (ECE), along with alumni Perry Adebar (CivE MASc 8T7, PhD 9T0), Mark Hundert (IndE 7T1), Christopher Pickles (MMS 7T4, MASc 7T5, PhD 7T7) and John Young (MMS 7T1, MIE MASc 7T4) are among the CAE’s 50 new fellows. The CAE is a national institution through which Canada’s most distinguished and experienced engineers provide strategic advice on matters of critical importance to Canada. The new CAE fellows were inducted on June 26 in Ottawa, as part of the Academy’s Annual General Meeting and Symposium.

“The Academy’s recognition of so many faculty and alumni attests to the tremendous contributions U of T Engineers are making in Canada and around the world,” said Dean Cristina Amon. “It also demonstrates their impact in all aspects of the engineering profession — from engineering education to fundamental research to technology transfer, commercialization and consulting.”

Robert Andrews holds the NSERC Industrial Research Chair in Drinking Water Research, working with industry partners who serve over four million people in Southern Ontario. His collaborations with municipalities have allowed him to solve real-world problems that have a direct impact on the safety of Canada’s drinking water supply. An expert in drinking water treatment, Andrews is a member of several decision-making committees and advisory councils in Canada and the United States. His work has been recognized with prestigious awards from the Engineering Institute of Canada, the Canadian Society for Civil Engineering, and the American Water Works Association, among others.

Sanjeev Chandra is co-founder of the University of Toronto’s Centre for Coating Technologies, one of the world’s leading research centres in the area of thermal spray coatings. He has collaborated with research groups and industrial partners around the world in the development of cutting-edge technology in this area. Chandra’s work has been applied in the fields of spray coating and forming, spray cooling, ink jet printing, agricultural spraying and forensic science. He is a fellow of the American Association for the Advancement of Science, the American Society of Mechanical Engineers, and the Canadian Society for Mechanical Engineering, and received the NSERC Brockhouse Prize.

Through his research at Holland Bloorview and U of T, Tom Chau has developed assistive technologies which give children and youth with severe physical limitations the ability to communicate independently. Chau created the award-winning Virtual Music Instrument, which allows individuals with disabilities to express themselves through music. Additionally, he has pioneered optical brain-computer interfaces which allow nonverbal individuals to communicate through thought alone. Chau is a fellow of the American Institute for Medical and Biological Engineering and the recipient of several awards. In 2011 he was named one of 25 Transformational Canadians by The Globe and Mail.

Heather MacLean is an internationally recognized leader in sustainable systems analysis, including life cycle assessment and its application to energy systems and vehicles. Her work has led to sustainability assessment and life cycle assessment being viewed as critical tools by industry, government and other organizations, and has guided regulations such as California’s Low Carbon Fuel Standard. MacLean is an advisor to the World Bank/World Resources Institute for Sustainable Transportation. She is a fellow of the Engineering Institute of Canada and recipient of the Canada Mortgage and Housing Corporation Excellence in Education Award for Promotion of Sustainable Practices.

Wei Yu has made highly influential contributions to the field of information theory and communication engineering. His research addresses fundamental limits of information transmission in communication networks. Yu proposed dynamic spectrum management methods that have been used in millions of digital subscriber lines worldwide and also contributed significantly to the capacity analysis and optimization techniques for multiuser multiple-input multiple-output (MIMO) wireless communication channels, which are widely used in cellular networks. Professor Yu is an IEEE fellow, recipient of the NSERC E.W.R. Steacie Memorial Fellowship, and a Thompson Reuters Highly Cited Researcher.

Perry Adebar has made important contributions to the profession and practice of engineering in Canada. An award-winning educator, he is known for presenting a strong connection between theory and engineering practice, and his views are highly respected by industry. He is head of UBC Civil Engineering, and was previously associate dean of Applied Science at UBC. His research has had a direct impact on the seismic design of high-rise concrete buildings in Canada. Professor Adebar has provided engineering advice to several consulting engineering firms. He is a director of the Structural Engineers of B.C. and a member of the Canada TF-1 HUSAR Team.

Mark Hundert is a pioneer in the application of industrial engineering and operations research practices in order to improve the delivery of health care in Canada. He has helped to introduce principles and methodologies to improve the efficiency and effectiveness of our hospitals and other health care organizations. Among his many contributions in this field, Hundert spearheaded the development of a national database benchmarking the efficiency and quality of care in Canadian hospitals, which has been an essential tool in identifying and addressing areas needing improvement in the Canadian health care system. He received the Ontario Professional Engineers Management Medal in 2008.

A leading authority on microwave heating for metallurgical applications, Christopher Pickles has been a pioneer in the development of microwaves for processing ores, precious metal residues, and waste materials. Other major contributions include the use of extended arc plasma reactors for the treatment of electric furnace dusts and generation of ferro-alloys. Professor Pickles has presented short courses for industry, mentored close to 70 researchers, published over 170 papers, coedited five conference volumes and coauthored a textbook on Chemical Metallurgy. He is a fellow of the Canadian Institute of Mining, Metallurgy and Petroleum and has won national awards.

John Young has been eminently successful in the generation and application of new knowledge associated with primary steelmaking operations. He has provided exceptional engineering leadership in simulation modelling and commissioning of numerous steelmaking plants within Canada and abroad. He has coauthored a textbook entitled “Metallurgical Plant Design” and made significant contributions to the training of engineers in industry, as well as engineering students at both McGill and U of T, where he serves as an adjunct lecturer and instructor for MSE 450: Plant Design for Materials Process Industries. Throughout his career, Young has been an excellent ambassador for the engineering profession. He has received a number of high profile awards from AIME’s Iron and Steel Society.

Originally appeared on U of T Engineering News by Carolyn Farell | Posted on June 27th, 2017

 

Convocation | June 2017

Graduating Civil and Mineral Engineering students and their guests are invited to a convocation reception, which will take place immediately following the convocation ceremony.

Please note that this is a private event for graduates, guests and faculty of the Department.

Preparing the next generation of engineering leaders to grow Africa’s megacities sustainably

Posted originally on U of T News | May 30th, 2017 by Tyler Irving

Left to right: Rahim Rezaie (U of T Engineering), Erastus M. Mwanaumo (Assistant Dean, School of Engineering, University of Zambia) and Professor Murray Metcalfe (U of T Engineering) at the University of Zambia. A partnership between U of T Engineering and various institutions in Africa aims to prepare the engineering leaders who will build the world’s fastest-growing cities.

Today, seven of the world’s 100 largest cities are in Africa. But by 2050, population models predict that this will rise to 21, and eventually reach 40 by the end of the century. By then, Africa will be home to five of the world’s ten largest cities, each with more than 50 million residents. That’s why U of T Engineering postdoctoral researcher Nadine Ibrahim (CivE) is delivering lectures to students half a world away.

Educational tools such as massively open online courses (MOOCs) offer a way for Ibrahim and her colleagues to share their expertise in sustainable cities with the students who will lead African cities through the coming transformation.

“There is a lot of infrastructure to be built, and a lot of engineers will be required to build it,” says Professor Murray Metcalfe, who is Professor, Globalization at U of T Engineering and the project director. “That creates a tremendous opportunity for African leaders to drive development that happens in a way that is sustainable, both economically and environmentally.”

Earlier this month, Ibrahim and her colleagues used an online platform to deliver a course on sustainable cities to a group of students at the African Leadership University in Mauritius, an island nation in the Indian Ocean. Instructors were spread across four locations — Toronto, Oshawa, Boston and Mauritius — and at one point the students had to deal with torrential rains that kept them confined to their dorms, but the pilot project was deemed a success.

The three-day course served as the first test of the team’s larger and more ambitious goal: to develop scalable online courses that will help prepare the next generation of engineering leaders building sustainable cities across the entire African continent.

Ibrahim is adapting material from a course she teaches to undergraduate and graduate students at U of T: CIV 577 Infrastructure for Sustainable Cities. “The course challenges students to design an urban area, such as the port lands of Toronto, through to the year 2050,” she says. “This year students selected eight cities, including Cape Town and Dar es Salaam. It was very successful, and allowed us to see that this would work with students around the world.”

The team has spent the last several months laying the groundwork for a strong network of local partners across the African continent. Last summer, Ibrahim and PhD candidates Kirstin Newfield (CivE) and Antoine Despres-Bedward (OISE) travelled to institutions in Kenya, Rwanda and Uganda. They also attended a conference organized by the African Virtual University, an online-only institution based in Dakar, Senegal and Nairobi, Kenya.

Left to right: Professor Jackoniah Odumbe (Centre for Online and Distance Learning), Antoine Despres-Bedward (OISE ), Kirstin Newfield (U of T Enginering), Nadine Ibrahim (U of T Engineering), Professor James Nyangaya (Mechanical Engineering), Professor David Otieno Koteng (Civil and Construction Engineering), Professor Ernest Odhiambo (Mechanical Engineering) at the University of Nairobi in Kenya.

A few months later, Metcalfe and research associate Rahim Rezaie followed up with a trip to institutions in Zambia, South Africa, Ghana and Ethiopia, and participated in the African Engineering Education Association Conference.“Everywhere we went, we looked at the student populations and the online capabilities,” says Ibrahim. “We tried to imagine what a virtual global classroom, and eventually a virtual lab, would look like. Everyone we talked to was excited about the project.”Among other collaborators on the project are Professor Brent Sleep (CivE), who is the principal investigator on a Connaught Global Challenge Award grant that will fund various aspects of the project, Professor Greg Evans (ChemE) and Professor Dan Hoornweg (UOIT and adjunct in CivE). The team has also received support from the Dean’s Strategic Fund and the U of T Learning and Education Advancement Fund (LEAF).

Building on the success of the pilot course, the team is now working on the first two small private online courses (SPOCs) they plan to deliver starting in early 2018. Involving academics at African partner universities in co-developing the course content is central to the team’s approach. The courses will be a mix of live instruction, recorded lectures and assignments that can be completed online.

Metcalfe says that the rapid pace of growth in Africa offers a chance to leapfrog over some of the technologies that have hindered sustainability in the developed world. “The analogy everyone points to is cell phones,” says Metcalfe. “In India and Africa, they have skipped right over land lines and elaborate telecom switches to something with a smaller footprint. We think African cities can do something similar in urban infrastructure.”

But for Ibrahim, the most inspiring part has been the students. “Whatever the challenges, they make it work,” she says. “Their hunger for knowledge is very motivating.”

Ontario Professional Engineers Foundation for Education honours top undergraduate students

Alumna Marisa Sterling (far right), faculty and members of the Ontario Professional Engineers Foundation for Education pose with undergraduate scholarship recipients in the Bahen Centre for Information Technology. (Photo: Jamie Hunter)
Alumna Marisa Sterling (far right), faculty and members of the Ontario Professional Engineers Foundation for Education pose with undergraduate scholarship recipients in the Bahen Centre for Information Technology. (Photo: Jamie Hunter)

Alumna Marisa Sterling (far right), faculty and members of the Ontario Professional Engineers Foundation for Education pose with undergraduate scholarship recipients in the Bahen Centre for Information Technology. (Photo: Jamie Hunter)

Ten of U of T Engineering’s top undergraduate students were recognized by the Ontario Professional Engineers Foundation for Education (OPEFE) for high academic achievement and co-curricular contributions.

Two entrance scholarships and eight in-course scholarships totalling $15,000 were presented to students at a reception held in the Bahen Centre for Information Technology on March 23.

“It’s an honour for me to present these scholarships to such a remarkable group of students,” said Marisa Sterling, P.Eng. (ChemE 9T1), president of the OPEFE. “It’s important that we give back to the next generation so we can keep evolving the profession — we’re only as strong as those whom we surround ourselves with.”

Professional Engineers Ontario (PEO) established OPEFE in 1959 and it remains one of U of T Engineering’s longest-running partnerships. OPEFE’s scholarships are funded by contributions from professional engineers across the province from organizations such as PEO and the Ontario Society of Professional Engineers.

OPEFE 2017 scholarship recipients

Marina Reny portraitMarina Reny (Year 4 MinE + PEY)

This past year, Marina Reny captained the University of Toronto Mining Games team, leading the team to a second-place overall finish at the 27th Annual Canadian Mining Games. She is also currently serving as the president of the Mineral Engineering Club. During her Professional Experience Year (PEY) internship, Reny worked in the Mine Operations Department at the Kearl Oil Sands Project in Northern Alberta. After graduation, she will be pursuing a career in mining, where she will work towards building a more sustainable industry.

Arnav Goel portraitArnav Goel (Year 2 CompE)

Arnav Goel is interested in the field of machine learning and data science. He is involved in a number of student clubs, including the University of Toronto Robotics Association (UTRA) and Blue Sky Solar Racing, where he works with the software team to optimize algorithms. Goel is also a web developer for the Institute of Electrical and Electronics Engineers’ U of T student branch.

Richard Yuze Li portraitRichard Yuze Li (Year 3 IndE)

Richard Yuze Li is passionate about data science and operation research. Last summer, he worked as a software engineer intern for the Royal Bank of Canada. Li has been actively involved in sports and creating job opportunities for the student community. He is currently part of the You’re Next Career Network, the largest student-run career organization in Canada. This summer, he will be conducting research in data science at the Chinese Academy of Sciences.

 

Calvin Rieder portraitCalvin Rieder (Year 2 MechE)

Calvin Rieder is interested in the areas of energy and water systems. Over the past several years, he has worked on designing solutions that combine environmental engineering with social justice to increase access to clean water where it is most acutely needed. He has been heavily involved in the U of T Human Powered Vehicle Design Team, contributing to the design and construction of two speedbikes. Rieder is also passionate about music and is a tenor in the Skule™ Choir.

Tobias Rozario portraitTobias Rozario (Year 1 ElecE)

Tobias Rozario is interested in energy and electronics specializations within the field of electrical and computer engineering. He recently obtained a summer internship for a startup company named Basilisk. He will help them develop a quiz-building app for students. Outside of class, Rozario trains in the art of tae kwon do, and is aiming to obtain his first-degree black belt this summer.

Enakshi Shah portraitEnakshi Shah (Year 4 ChemE + PEY)

Enakshi Shah is working towards completing a BASc in chemical engineering with a minor in sustainability and a certificate in business. She is passionate about programming, and is currently completing a software development internship at Nascent Digital, a digital consulting firm. She also enjoys learning about the intersection of policy and sustainable urban development, and how technology is shaping that landscape. Shah is active in helping Canada achieve its emissions reduction goals. In particular, she wants to engage young minds and develop opportunities for collaboration between students and environmental non-governmental organizations.

Marguerite Tuer-Sipos portraitMarguerite Tuer-Sipos (Year 3 MSE +PEY)

This past summer, Marguerite Tuer-Sipos participated in an international research exchange at Lund University in Sweden, where she investigated the biomaterial properties of titanium oxide for immobilizing enzymes. She will begin a PEY internship at Peel Plastics in May. Outside of academics, Tuer-Sipos enjoyed working in a TA-mentor role for first-year Materials Engineering students.

Jeremy Wang portraitJeremy Wang (Year 4 EngSci + PEY)

Jeremy Wang’s mission is to leverage aerospace and leadership development to empower society. Through the PEY internship program, he presently serves as the chief technology officer of The Sky Guys, Canada’s leader in unmanned aerial services, training and technology for industry and defense. Wang is also a part-time leadership facilitator with the U of T Institute for Leadership Education in Engineering, and was selected as one of The Next 36 in 2016. Read more about Wang’s PEY experience at U of T Engineering News.

Lingxiao Zeng portraitLingxiao Zeng (Year 3 CompE + PEY)

Lingxiao Zeng’s primary interest is software programming but she is also minoring in engineering business. This summer, she will be travelling to San Jose for a 12-month PEY internship at Intel. Zeng is involved in several student clubs, serving as vice-president of the Association of Chinese Engineers and is the co-founder of Freer, which provides volunteer opportunities in South America.

First-year engineering student Madelaine Elizabeth Shiell received an entrance scholarship but was not in attendance at the event.


This story originally appeared on U of T Engineering News.

Heat, housing and health: Marianne Touchie and the complexity of multi-unit residential buildings

Professor Marianne Touchie (CivE, MIE) is working with Toronto Community Housing and The Atmospheric Fund to better understand how changes to energy use affect indoor environmental quality in multi-unit residential buildings. Toronto Public Health is collaborating to use their data to inform policy. (Photo: Kevin Soobrian)

Professor Marianne Touchie (CivE, MIE) is working with Toronto Community Housing and The Atmospheric Fund to better understand how changes to energy use affect indoor environmental quality in multi-unit residential buildings. Toronto Public Health is collaborating to use their data to inform policy. (Photo: Kevin Soobrian)

Professor Marianne Touchie (CivE, MIE) is working with Toronto Community Housing and The Atmospheric Fund to better understand how changes to energy use affect indoor environmental quality in multi-unit residential buildings. Toronto Public Health is collaborating to use their data to inform policy. (Photo: Kevin Soobrian)


This story originally appeared at U of T Engineering News

This story is a part of a  five-part #RisingStars series, highlighting the work of our early-career professors.

In cities from coast to coast, condominium towers are being constructed at an unprecedented rate, with 30,000 new units added in 2015 to the Toronto market alone. This is driven both by recent advances in the design, engineering and construction of tall buildings, and a stark increase in demand for these multi-unit residential buildings (MURBs). “More people are moving downtown,” says Professor Marianne Touchie (CivE, MIE). “There’s very limited space, so we need high-density housing options and MURBs provide that.”

With a background in building science, Touchie studies the relationships between energy efficiency and indoor environment quality parameters, such as thermal comfort, in these high-density buildings. In Toronto, one of the largest suppliers of MURBs is Toronto Community Housing Corporation (TCHC), which owns 50 million square feet of residential space and houses 110,000 residents. Many of these are older buildings without air conditioning.

“A lot of these buildings rely on ventilation through the building envelope, which is not terribly effective. At the same time, we need to reduce our energy consumption and energy use,” she says. “But reducing energy usage has implications for occupants, and that’s what I’m interested in studying.”

Touchie is currently collaborating with The Atmospheric Fund (formerly the Toronto Atmospheric Fund) on a large research project—one that she has been involved with since her role as their Building Research Manager from 2014 to 2015. She and her colleagues are collecting data on energy consumption, temperature, humidity and carbon dioxide concentration in more than 70 apartments spanning seven different TCHC buildings.

“It’s probably the most comprehensive MURB monitoring project in North America, if not the world,” says Touchie.

They are also working with Professor Jeffrey Siegel (CivE), who is examining concentrations of formaldehyde, particulate matter and, through a partnership with Health Canada, radon concentrations. Touchie says that collaborations, such as those with TCHC, The Atmospheric Fund and Siegel, are critical to creating a comprehensive picture of the MURBs she studies. “Buildings are so complex,” says Touchie. “I have training in one particular area, but I’m not an indoor air quality expert. When we make changes from an energy perspective to the ventilation system, or the heating and cooling system, it has an influence on the air quality. Working with other experts, like Professor Siegel, we can gather data on all sides.”

Touchie’s findings with The Atmospheric Fund and TCHC have drawn the interest of Toronto Public Health. The agency is interested in the health impact of extreme heat, and the study has found that these TCHC buildings are often overheated, especially in the summer.

“Extreme heat is a health problem, especially for the most vulnerable populations,” says Sarah Gingrich, a Health Policy Specialist at Toronto Public Health. Very young children, the elderly and people with illnesses or taking certain medications are most at risk. “This work is providing evidence that excessive heat is a problem in older apartment buildings in Toronto. The research is showing that although the temperature cools down at night outside, in these buildings it rises during the day and they stay hot all night long.”

Touchie and her collaborators are finding that a major culprit for the inefficient heating and cooling performance is uncontrolled air leakage. These leaks often occur around windows, doors, exhaust fans and elevator shafts. But inefficiencies aren’t just a building issue: she adds that “because people can do whatever they want in their own homes, like open and close their windows, MURBs combine the complexity of high-rise buildings with the occupant wild card,” which makes managing the indoor environment even trickier.

“The study provides valuable information on Toronto apartment buildings that will help to inform policy development,” says Toronto Public Health’s Gingrich. “It fills a very important gap by providing up-to-date data that highlights some of the challenges in this type of building, and points to potential solutions.”

Next, Touchie hopes to expand her research to newer condos, where data is even scarcer. “They’re going up so quickly, and we really have no information about the quality of the indoor environment or their energy performance,” she says. “I am very curious whether their energy consumption matches the performance level promised at the design stage.”