New partnership establishes a Canadian teaching city for engineering students

Optimizing traffic flow between the City of Oshawa, at right, and Toronto, lower left, is one challenge that Master of Engineering students in the Cities Engineering and Management program at U of T will study in the newly established ‘teaching city.’ (Image: Google Maps)


Medical doctors learn in immersive teaching hospitals — and now U of T Engineering students will have their own immersive learning opportunities within a real-life teaching city. Later this year, the City of Oshawa will become Canada’s first-ever living laboratory for urban research, allowing students to probe complex municipal issues and test practical solutions for the future.The University of Toronto’s Faculty of Applied Science & Engineering is teaming up with the Canadian Urban Institute, the University of Ontario Institute of Technology, Durham College and the City of Oshawa to realize this first-of-its-kind partnership. As a ‘teaching municipality,’ Oshawa will connect engineering students with city staff, testing new technologies and methods on the ground and in real time.

“This is a new era for engineering education,” says Professor Brent Sleep, chair of the Department of Civil Engineering. “With this innovative partnership, through internships and research opportunities U of T Engineering students, including students in the Master of Engineering in Cities Engineering and Management (MEngCEM) program, will study and resolve real-life problems in today’s urban setting.”

A memorandum of understanding between the partners was signed June 5, 2017 at the Arts Resource Centre in downtown Oshawa. The coalition continues to invite participation from a variety of industry partners, which will expand the potential application areas for innovations studied in the city, including market-focused solutions for commercialization.

Moving beyond textbooks and laboratories, this dynamic urban lab will bring students and researchers closer to emerging trends. Potential areas for exploration could extend from current U of T studies in intelligent transportation systems, sustainable urban infrastructure including air pollution and health, drinking water systems and building sciences. The partnership will also seek to deepen evidence-based policy development and research-driven innovations from U of T MEngCEM students.

“Access to real-time urban data and systems will provide significant insights and transformative opportunities to assess problems and identify scalable and sustainable solutions for tomorrow,” says Sleep. “Learning outside lecture halls encourages students to interact with a multitude of stakeholders, learning to support and interact with policymakers, residents and their future colleagues.”

As urbanization intensifies the pressure on cities — from increased demand on utilities, to greater need for emergency services and schools, to urgent need for traffic and transit upgrades — a new generation of highly trained engineering talent will guide and manage new technologies, policies and practices to meet the needs of citizens across Canada and around the globe. The first student cohort will begin studying this experiential teaching municipality in 2018.

Driverless cars, artificial intelligence and e-sharing are transforming transportation. Are our cities ready?

Originally posted on U of T News  |  May 26th, 2017 by Tyler Irving

This story is the first in a news series on artificial intelligence and machine learning, published throughout the spring and summer of 2017.

Professor Baher Abdulhai, seen here with civil engineering undergraduate students Andrew Lau and Marie-Sophie Wint, has created a new research centre dedicated to studying the impact of transformative transportation systems, from car sharing to self-driving vehicles. (Photo: Neil Ta)

From Waymo’s self-driving cars to e-sharing companies like Zipcar, technology is disrupting the traditions of travel. Proponents of these innovations promise that they will improve safety, reduce congestion and lower emissions — a new U of T research centre is studying how these predictions may play out in reality, and how to make the new technology work in our favour.The iCity Centre for Automated and Transformative Transportation Systems (iCity-CATTS), the newest addition to the University of Toronto Transportation Research Institute (UTTRI), will examine how new transportation technologies affect our cities. Its multidisciplinary team will create models and methods to quantify their impacts on our transportation systems, our future cities, and their economic, social and environmental sustainability. This includes addressing factors such as congestion, commuting times, urban sprawl, emissions and human health.

Professor Baher Abdulhai (CivE) will lead the new centre, with several of his UTTRI colleagues. “When Henry Ford created the first mass-produced model-T automobile more than 100 years ago, the world changed,” says Abdulhai. “With revolutionary technology, we are now taking the car as we know it and putting it on steroids. We have a bold vision for a future that is automated, shared and green, but there are risks too. We want to avoid those risks and empower people and businesses to maximize their potential.”

Development of the self-driving car is being accelerated by improvements in machine learning and artificial intelligence that will improve its navigational and maneuvering capabilities, and presumably lead to a more efficient use of available road space. But Abdulhai says that may or may not be the case. “If an autonomous vehicle is programmed to be cautious and leaves more space in front of it compared to the human driver, the capacity of our roads could actually go down,” he says.

Baher Abdulhai and his team at iCity-CATTS plan to research the impacts that self-driving cars such as Google’s Waymo could have on the economic, social and environmental sustainability of our cities. (Photo: Grendelkhan, via Wikimedia Commons)

Autonomous vehicles could also contribute to urban sprawl. “The convenience of being in a car that drives itself while you’re watching a movie or working on a laptop might mean that people now choose to live further away from where they work,” says Abdulhai.

Another example: “When I go to the dentist, do I send my autonomous car back home to self-park for free or ask it to drive around for half an hour until I am done?” asks Abdulhai. “There are many such questions, but the truth is, nobody knows the answers yet.”

Data on the potential long-term impacts of related technologies, such as car sharing and ride-hailing apps, are also limited. And the unknowns multiply when these technologies are combined into multi-modal transportation networks: imagine an app that buys you a train ticket, summons an autonomous vehicle to take you to the station and, at the other end, ensures that an autonomous bicycle is rolling toward you, ready for you to hop on.

By building models and simulating various scenarios, Abdulhai and his team will study topics such as:

  • Infrastructure — Will autonomous vehicles increase road capacities or put more strain on highways, off-ramps or other roads? Will separate or hybrid lanes be desirable?
  • Freight and shipping — Could self-driving trucks, autonomous robots or drones reduce delivery time? How would this impact the economic bottom line? How would these robots interact with pedestrians on sidewalks?
  • Environment — Can car sharing services combine with ride-hailing apps reduce the number of cars on the road? If so, how much will that reduce emissions and carbon?
  • Human health — Do smart technologies provide opportunities to better integrate walking or cycling into our commutes? How will this impact our choices?
  • Policy — How do we design our future cities to ensure that technology works for us, rather than against us? What policies, based on evidence, can help us avoid the pitfall of past urban development? What policies are needed to deliver a future transportation system that is automated, shared and green?
  • Sustainability — How do we ensure that the triple bottom line, i.e. economic, environmental and social sustainability, is maintained for our cities?

iCity-CATTS brings together leading experts in all of these areas from across U of T Engineering and beyond. Working across disciplines, they will provide insights that will enable both government and industry make informed decisions and stay ahead of the coming transformation.

“Much of the current research interest focuses on the technology — less attention has been paid to the mobility, social, economic, and environmental implications,” says Abdulhai. “This is what iCity-CATTS is for. Our research will show how new technologies, including artificial intelligence and automated vehicles, will impact city-wide systems and affect our quality of life.”

Daniel Posen: new CivE faculty explores the relationship between public policy and the environment

In an increasingly interconnected and interdisciplinary world, the Department of Civil Engineering was pleased to welcome Prof. I. Daniel Posen as a new faculty member in January 2017.

We asked him a couple questions about his new appointment:

Could you explain the focus and (potential) impact of your research?

I usually describe my research as ‘system-scale environmental sustainability analysis,’ which basically means that I’m trying to understand the big picture when it comes to how both public and private decisions impact the environment. A key goal of this work is to help government and industry tailor their policies and investment decisions to improve environmental outcomes. Much of my work focuses on prioritizing greenhouse gas reduction strategies, especially when choosing among competing uses for biomass (energy/materials derived from plants), and within the urban environment. I also plan to incorporate a broader range of environmental metrics (e.g., related to air & water quality or resource use) to provide a holistic evaluation of these systems, and others.

Your academic background is unique, can you explain why your interests have varied from chemistry to economics to public policy to engineering?

There is actually a common theme linking my degrees together: sustainability. The research I do is inherently interdisciplinary, using tools from natural sciences, engineering, economics, and policy analysis. There is a lot of important work being done in each of these disciplines, and one of the biggest challenges is about how to link these different areas together to design systems with the best social and environmental outcomes. This is a key goal of my work, so it has been a real asset to have a background in these different fields.

Why did you choose U of T?

I’m originally from Toronto, and am passionate about doing research that benefits both Canada and the world. U of T is a top university in Canada, which has both a rich set of colleagues with whom I can collaborate, and allows me to work with some of the best students. The city of Toronto is also a great place to live and is an excellent environment for researching urban-scale sustainability.

 

What are you most looking forward to in your new position?

I really do love all aspects of the job: research, teaching, engaging with young researchers, being in an academic environment, etc. One thing that’s particularly exciting about being new here is the prospect of building new collaborations and starting to work with a whole new group of students and colleagues.

As a new professor, what one piece of advice would you give to new students?

For undergrads, I’d say it’s important to focus on key foundational skills in engineering, math, statistics and the like, but don’t neglect the broader picture – take advantage of your elective courses and make sure to step outside your field once in a while. For graduate students, likewise, start thinking early on about what skills you want to develop, and put in place a plan to develop them. At the same time, don’t fall into the temptation of only using those skills – make sure the tools you’re using fit the problem you want to answer.

What do you hope to accomplish in your new position/during your time at U of T Engineering?

Like most professors, I’d say my mission is two-fold: make an impact with my research, and train the next generation of practitioners and scholars. In my case, that means I hope to help craft sensible environmental strategies at the local, national and global scale, while training our engineering graduates to think carefully and holistically about how they influence the systems around us.

Infrastructure’s impact: How public transit investments affect our environment

Professor Shoshanna Saxe (CivE) analyses the environmental and social impact of large public transit infrastructure projects, informing policymakers as they decide which investments to make. (Photo: Tyler Irving)
Professor Shoshanna Saxe (CivE) analyses the environmental and social impact of large public transit infrastructure projects, informing policymakers as they decide which investments to make. (Photo: Tyler Irving)

Professor Shoshanna Saxe (CivE) analyses the environmental and social impact of large public transit infrastructure projects, equipping policymakers with data as they decide which investments to make. (Photo: Tyler Irving)

 

This story originally appeared at U of T Engineering News

The benefits of building public transit include reducing greenhouse gas emissions, relieving traffic congestion and expanding a growing city. Yet each transit project is unique, and predicting its future effectiveness is difficult. Professor Shoshanna Saxe (CivE) crunches the numbers on existing infrastructure to provide key decision-makers with a ‘reality check’ on the environmental and social impacts of today’s transit investments.

“Engineers usually aren’t involved in policymaking, and policymakers usually aren’t involved in engineering,” says Saxe. “I’m trying to bridge that gap.”

Saxe joined U of T Engineering in August 2016. Before completing her PhD at the University of Cambridge, she spent three years at a major consulting engineering firm in Toronto, working on projects such as the Eglinton Crosstown transit line and the Toronto-York Spadina subway extension.

“I love design, it’s amazing,” she says. “However, when you’re building things that people are going to use, you have to stay well within the limits of what you know for sure. I was curious about questions that we didn’t already know the answers to.”

During her PhD, Saxe conducted a detailed analysis of the London Underground’s extension of the Jubilee Line, completed in 1999. She gathered data on the greenhouse gases produced during construction and operation of the line, then used transit and land-use surveys to estimate the reduction of greenhouse gas emissions attributable to people using the line and living near it. By combining the two, she could calculate the net environmental benefit of that transit project.

“It turned out to be a bit of a mixed bag,” she says. “If you make some optimistic assumptions, you could say that it broke even in terms of greenhouse gas emissions around 2012 or 2013. If you are more pessimistic, you’re looking at a greenhouse gas payback of twice as long.”

Saxe says that the Jubilee Line extension sees approximately 175 million trips per year. On projects where ridership is low, the environmental payback period can be much longer. Saxe also studied the Sheppard subway line in Toronto, and found that with a much lower ridership it initially struggled to provide greenhouse gas savings. Over time, the Sheppard Subway Line has benefited from the decreasing emissions associated with electricity in Ontario. The results of the Sheppard Subway study were recently published in the journal Transportation Research Part D: Transport and Environment.

“If you’re at Don Mills station, and you want to go north, east, or even southeast, the network doesn’t serve you yet,” she says. “We still see people from that area driving 70 per cent of the time, so unfortunately there’s just a lot less opportunity for savings.”

Saxe says that her dream project would be to follow a major piece of infrastructure, such as a new transit line, from its conception through construction and use for 20 or 30 years — essentially throughout her career.

“I want to answer questions like: why did we originally build it, how did we originally build it, how did it perform over its lifetime, how did we maintain it and what did it need?” she says. “If we know how our present decision-making affects things decades from now, we can make better decisions.”

Heat, housing and health: Marianne Touchie and the complexity of multi-unit residential buildings

Professor Marianne Touchie (CivE, MIE) is working with Toronto Community Housing and The Atmospheric Fund to better understand how changes to energy use affect indoor environmental quality in multi-unit residential buildings. Toronto Public Health is collaborating to use their data to inform policy. (Photo: Kevin Soobrian)

Professor Marianne Touchie (CivE, MIE) is working with Toronto Community Housing and The Atmospheric Fund to better understand how changes to energy use affect indoor environmental quality in multi-unit residential buildings. Toronto Public Health is collaborating to use their data to inform policy. (Photo: Kevin Soobrian)

Professor Marianne Touchie (CivE, MIE) is working with Toronto Community Housing and The Atmospheric Fund to better understand how changes to energy use affect indoor environmental quality in multi-unit residential buildings. Toronto Public Health is collaborating to use their data to inform policy. (Photo: Kevin Soobrian)


This story originally appeared at U of T Engineering News

This story is a part of a  five-part #RisingStars series, highlighting the work of our early-career professors.

In cities from coast to coast, condominium towers are being constructed at an unprecedented rate, with 30,000 new units added in 2015 to the Toronto market alone. This is driven both by recent advances in the design, engineering and construction of tall buildings, and a stark increase in demand for these multi-unit residential buildings (MURBs). “More people are moving downtown,” says Professor Marianne Touchie (CivE, MIE). “There’s very limited space, so we need high-density housing options and MURBs provide that.”

With a background in building science, Touchie studies the relationships between energy efficiency and indoor environment quality parameters, such as thermal comfort, in these high-density buildings. In Toronto, one of the largest suppliers of MURBs is Toronto Community Housing Corporation (TCHC), which owns 50 million square feet of residential space and houses 110,000 residents. Many of these are older buildings without air conditioning.

“A lot of these buildings rely on ventilation through the building envelope, which is not terribly effective. At the same time, we need to reduce our energy consumption and energy use,” she says. “But reducing energy usage has implications for occupants, and that’s what I’m interested in studying.”

Touchie is currently collaborating with The Atmospheric Fund (formerly the Toronto Atmospheric Fund) on a large research project—one that she has been involved with since her role as their Building Research Manager from 2014 to 2015. She and her colleagues are collecting data on energy consumption, temperature, humidity and carbon dioxide concentration in more than 70 apartments spanning seven different TCHC buildings.

“It’s probably the most comprehensive MURB monitoring project in North America, if not the world,” says Touchie.

They are also working with Professor Jeffrey Siegel (CivE), who is examining concentrations of formaldehyde, particulate matter and, through a partnership with Health Canada, radon concentrations. Touchie says that collaborations, such as those with TCHC, The Atmospheric Fund and Siegel, are critical to creating a comprehensive picture of the MURBs she studies. “Buildings are so complex,” says Touchie. “I have training in one particular area, but I’m not an indoor air quality expert. When we make changes from an energy perspective to the ventilation system, or the heating and cooling system, it has an influence on the air quality. Working with other experts, like Professor Siegel, we can gather data on all sides.”

Touchie’s findings with The Atmospheric Fund and TCHC have drawn the interest of Toronto Public Health. The agency is interested in the health impact of extreme heat, and the study has found that these TCHC buildings are often overheated, especially in the summer.

“Extreme heat is a health problem, especially for the most vulnerable populations,” says Sarah Gingrich, a Health Policy Specialist at Toronto Public Health. Very young children, the elderly and people with illnesses or taking certain medications are most at risk. “This work is providing evidence that excessive heat is a problem in older apartment buildings in Toronto. The research is showing that although the temperature cools down at night outside, in these buildings it rises during the day and they stay hot all night long.”

Touchie and her collaborators are finding that a major culprit for the inefficient heating and cooling performance is uncontrolled air leakage. These leaks often occur around windows, doors, exhaust fans and elevator shafts. But inefficiencies aren’t just a building issue: she adds that “because people can do whatever they want in their own homes, like open and close their windows, MURBs combine the complexity of high-rise buildings with the occupant wild card,” which makes managing the indoor environment even trickier.

“The study provides valuable information on Toronto apartment buildings that will help to inform policy development,” says Toronto Public Health’s Gingrich. “It fills a very important gap by providing up-to-date data that highlights some of the challenges in this type of building, and points to potential solutions.”

Next, Touchie hopes to expand her research to newer condos, where data is even scarcer. “They’re going up so quickly, and we really have no information about the quality of the indoor environment or their energy performance,” she says. “I am very curious whether their energy consumption matches the performance level promised at the design stage.”