Daniel Posen: new CivE faculty explores the relationship between public policy and the environment

In an increasingly interconnected and interdisciplinary world, the Department of Civil Engineering was pleased to welcome Prof. I. Daniel Posen as a new faculty member in January 2017.

We asked him a couple questions about his new appointment:

Could you explain the focus and (potential) impact of your research?

I usually describe my research as ‘system-scale environmental sustainability analysis,’ which basically means that I’m trying to understand the big picture when it comes to how both public and private decisions impact the environment. A key goal of this work is to help government and industry tailor their policies and investment decisions to improve environmental outcomes. Much of my work focuses on prioritizing greenhouse gas reduction strategies, especially when choosing among competing uses for biomass (energy/materials derived from plants), and within the urban environment. I also plan to incorporate a broader range of environmental metrics (e.g., related to air & water quality or resource use) to provide a holistic evaluation of these systems, and others.

Your academic background is unique, can you explain why your interests have varied from chemistry to economics to public policy to engineering?

There is actually a common theme linking my degrees together: sustainability. The research I do is inherently interdisciplinary, using tools from natural sciences, engineering, economics, and policy analysis. There is a lot of important work being done in each of these disciplines, and one of the biggest challenges is about how to link these different areas together to design systems with the best social and environmental outcomes. This is a key goal of my work, so it has been a real asset to have a background in these different fields.

Why did you choose U of T?

I’m originally from Toronto, and am passionate about doing research that benefits both Canada and the world. U of T is a top university in Canada, which has both a rich set of colleagues with whom I can collaborate, and allows me to work with some of the best students. The city of Toronto is also a great place to live and is an excellent environment for researching urban-scale sustainability.

 

What are you most looking forward to in your new position?

I really do love all aspects of the job: research, teaching, engaging with young researchers, being in an academic environment, etc. One thing that’s particularly exciting about being new here is the prospect of building new collaborations and starting to work with a whole new group of students and colleagues.

As a new professor, what one piece of advice would you give to new students?

For undergrads, I’d say it’s important to focus on key foundational skills in engineering, math, statistics and the like, but don’t neglect the broader picture – take advantage of your elective courses and make sure to step outside your field once in a while. For graduate students, likewise, start thinking early on about what skills you want to develop, and put in place a plan to develop them. At the same time, don’t fall into the temptation of only using those skills – make sure the tools you’re using fit the problem you want to answer.

What do you hope to accomplish in your new position/during your time at U of T Engineering?

Like most professors, I’d say my mission is two-fold: make an impact with my research, and train the next generation of practitioners and scholars. In my case, that means I hope to help craft sensible environmental strategies at the local, national and global scale, while training our engineering graduates to think carefully and holistically about how they influence the systems around us.

Infrastructure’s impact: How public transit investments affect our environment

Professor Shoshanna Saxe (CivE) analyses the environmental and social impact of large public transit infrastructure projects, informing policymakers as they decide which investments to make. (Photo: Tyler Irving)
Professor Shoshanna Saxe (CivE) analyses the environmental and social impact of large public transit infrastructure projects, informing policymakers as they decide which investments to make. (Photo: Tyler Irving)

Professor Shoshanna Saxe (CivE) analyses the environmental and social impact of large public transit infrastructure projects, equipping policymakers with data as they decide which investments to make. (Photo: Tyler Irving)

 

This story originally appeared at U of T Engineering News

The benefits of building public transit include reducing greenhouse gas emissions, relieving traffic congestion and expanding a growing city. Yet each transit project is unique, and predicting its future effectiveness is difficult. Professor Shoshanna Saxe (CivE) crunches the numbers on existing infrastructure to provide key decision-makers with a ‘reality check’ on the environmental and social impacts of today’s transit investments.

“Engineers usually aren’t involved in policymaking, and policymakers usually aren’t involved in engineering,” says Saxe. “I’m trying to bridge that gap.”

Saxe joined U of T Engineering in August 2016. Before completing her PhD at the University of Cambridge, she spent three years at a major consulting engineering firm in Toronto, working on projects such as the Eglinton Crosstown transit line and the Toronto-York Spadina subway extension.

“I love design, it’s amazing,” she says. “However, when you’re building things that people are going to use, you have to stay well within the limits of what you know for sure. I was curious about questions that we didn’t already know the answers to.”

During her PhD, Saxe conducted a detailed analysis of the London Underground’s extension of the Jubilee Line, completed in 1999. She gathered data on the greenhouse gases produced during construction and operation of the line, then used transit and land-use surveys to estimate the reduction of greenhouse gas emissions attributable to people using the line and living near it. By combining the two, she could calculate the net environmental benefit of that transit project.

“It turned out to be a bit of a mixed bag,” she says. “If you make some optimistic assumptions, you could say that it broke even in terms of greenhouse gas emissions around 2012 or 2013. If you are more pessimistic, you’re looking at a greenhouse gas payback of twice as long.”

Saxe says that the Jubilee Line extension sees approximately 175 million trips per year. On projects where ridership is low, the environmental payback period can be much longer. Saxe also studied the Sheppard subway line in Toronto, and found that with a much lower ridership it initially struggled to provide greenhouse gas savings. Over time, the Sheppard Subway Line has benefited from the decreasing emissions associated with electricity in Ontario. The results of the Sheppard Subway study were recently published in the journal Transportation Research Part D: Transport and Environment.

“If you’re at Don Mills station, and you want to go north, east, or even southeast, the network doesn’t serve you yet,” she says. “We still see people from that area driving 70 per cent of the time, so unfortunately there’s just a lot less opportunity for savings.”

Saxe says that her dream project would be to follow a major piece of infrastructure, such as a new transit line, from its conception through construction and use for 20 or 30 years — essentially throughout her career.

“I want to answer questions like: why did we originally build it, how did we originally build it, how did it perform over its lifetime, how did we maintain it and what did it need?” she says. “If we know how our present decision-making affects things decades from now, we can make better decisions.”

Heat, housing and health: Marianne Touchie and the complexity of multi-unit residential buildings

Professor Marianne Touchie (CivE, MIE) is working with Toronto Community Housing and The Atmospheric Fund to better understand how changes to energy use affect indoor environmental quality in multi-unit residential buildings. Toronto Public Health is collaborating to use their data to inform policy. (Photo: Kevin Soobrian)

Professor Marianne Touchie (CivE, MIE) is working with Toronto Community Housing and The Atmospheric Fund to better understand how changes to energy use affect indoor environmental quality in multi-unit residential buildings. Toronto Public Health is collaborating to use their data to inform policy. (Photo: Kevin Soobrian)

Professor Marianne Touchie (CivE, MIE) is working with Toronto Community Housing and The Atmospheric Fund to better understand how changes to energy use affect indoor environmental quality in multi-unit residential buildings. Toronto Public Health is collaborating to use their data to inform policy. (Photo: Kevin Soobrian)


This story originally appeared at U of T Engineering News

This story is a part of a  five-part #RisingStars series, highlighting the work of our early-career professors.

In cities from coast to coast, condominium towers are being constructed at an unprecedented rate, with 30,000 new units added in 2015 to the Toronto market alone. This is driven both by recent advances in the design, engineering and construction of tall buildings, and a stark increase in demand for these multi-unit residential buildings (MURBs). “More people are moving downtown,” says Professor Marianne Touchie (CivE, MIE). “There’s very limited space, so we need high-density housing options and MURBs provide that.”

With a background in building science, Touchie studies the relationships between energy efficiency and indoor environment quality parameters, such as thermal comfort, in these high-density buildings. In Toronto, one of the largest suppliers of MURBs is Toronto Community Housing Corporation (TCHC), which owns 50 million square feet of residential space and houses 110,000 residents. Many of these are older buildings without air conditioning.

“A lot of these buildings rely on ventilation through the building envelope, which is not terribly effective. At the same time, we need to reduce our energy consumption and energy use,” she says. “But reducing energy usage has implications for occupants, and that’s what I’m interested in studying.”

Touchie is currently collaborating with The Atmospheric Fund (formerly the Toronto Atmospheric Fund) on a large research project—one that she has been involved with since her role as their Building Research Manager from 2014 to 2015. She and her colleagues are collecting data on energy consumption, temperature, humidity and carbon dioxide concentration in more than 70 apartments spanning seven different TCHC buildings.

“It’s probably the most comprehensive MURB monitoring project in North America, if not the world,” says Touchie.

They are also working with Professor Jeffrey Siegel (CivE), who is examining concentrations of formaldehyde, particulate matter and, through a partnership with Health Canada, radon concentrations. Touchie says that collaborations, such as those with TCHC, The Atmospheric Fund and Siegel, are critical to creating a comprehensive picture of the MURBs she studies. “Buildings are so complex,” says Touchie. “I have training in one particular area, but I’m not an indoor air quality expert. When we make changes from an energy perspective to the ventilation system, or the heating and cooling system, it has an influence on the air quality. Working with other experts, like Professor Siegel, we can gather data on all sides.”

Touchie’s findings with The Atmospheric Fund and TCHC have drawn the interest of Toronto Public Health. The agency is interested in the health impact of extreme heat, and the study has found that these TCHC buildings are often overheated, especially in the summer.

“Extreme heat is a health problem, especially for the most vulnerable populations,” says Sarah Gingrich, a Health Policy Specialist at Toronto Public Health. Very young children, the elderly and people with illnesses or taking certain medications are most at risk. “This work is providing evidence that excessive heat is a problem in older apartment buildings in Toronto. The research is showing that although the temperature cools down at night outside, in these buildings it rises during the day and they stay hot all night long.”

Touchie and her collaborators are finding that a major culprit for the inefficient heating and cooling performance is uncontrolled air leakage. These leaks often occur around windows, doors, exhaust fans and elevator shafts. But inefficiencies aren’t just a building issue: she adds that “because people can do whatever they want in their own homes, like open and close their windows, MURBs combine the complexity of high-rise buildings with the occupant wild card,” which makes managing the indoor environment even trickier.

“The study provides valuable information on Toronto apartment buildings that will help to inform policy development,” says Toronto Public Health’s Gingrich. “It fills a very important gap by providing up-to-date data that highlights some of the challenges in this type of building, and points to potential solutions.”

Next, Touchie hopes to expand her research to newer condos, where data is even scarcer. “They’re going up so quickly, and we really have no information about the quality of the indoor environment or their energy performance,” she says. “I am very curious whether their energy consumption matches the performance level promised at the design stage.”

Preventative Engineering: monitoring the health of water systems

Preventative engineering

The city is a living organism. People are its cells, and water is its lifeblood. This is the analogy Prof. Bryan Karney uses as the philosophical underpinning of his work in water infrastructure. Like any other organism, things get complex fast. “We have infrastructure systems that are highly deteriorated,” he says. “The challenge is, how do you detect the deterioration of systems efficiently, effectively and accurately?”

The deterioration of systems shows up as pipes that break, as systems that leak and as pumps that perform inefficiently. Systems can fail slowly, or they can experience acute catastrophic damage.

“We are trying to develop strategies to listen to systems more effectively, understanding what they are telling us about their own performance.”

In the past, Karney argues, we have paid attention to the average performance of water systems, reacting only after they experience acute damage the way an ER doctor might respond to a sudden heart attack or stroke. Contemporary computer sensing and processing abilities have grown immensely, giving researchers the ability to actively monitor the health of water systems, as a cardiac specialist might track heart health as a preventative tool.

In the ideal future, engineers and technicians will run continual, complex diagnostics that quickly pinpoint the smallest disruptions, inefficiencies and even unauthorized access to infrastructure systems, stopping small problems before they become big. It’s this kind of technology Karney and his team are helping to develop. The stakes are high.

Mohamed Ghidaoui (CivE 8T9 MASc 9T1 PhD 9T3), now a Professor of Civil and Environmental Engineering at Hong Kong University of Science and Technology, provided a vital connection to one of the world’s densest cities. There, the unexpected failure of infrastructure can cost billions.

“He has been the leader for us to put together an initiative that is responding to Hong Kong’s opportunities,” Karney says. “We chose to work in Hong Kong because they take their infrastructure very seriously. The failure of any single system can be particularly catastrophic. Because of the intensity of land use, repairing systems is incredibly difficult.”

The strategy Karney and his team are employing is best described with another analogy. “What we are trying to do in Hong Kong is develop something like a SONAR system for pipes,” he explains. “We’re introducing high-frequency acoustic noise, sending out waves and getting impulses back that tell us about blockages in the system, leaks or unauthorized usage.”

The project’s approach is informed by additional work that Karney is undertaking through an NSERC Strategic Partnership Grant with the University of Waterloo. There, researchers like Bryan Tolson have developed a base method for introducing innovative diagnostics to existing infrastructure systems.

Such partnerships greatly enhance research capabilities, enabling researchers at multiple institutions with different areas of expertise to participate on a single complex project. In this case, the team is approaching Hong Kong’s challenges from structural, data acquisition and geotechnical angles. Karney notes, “we are looking for correlations between various physical parameters and the deterioration and performance of assets, like pipes.”

The capital costs of a typical urban water system range around $8,000 per person – in Toronto, that would be a valuation of around $25 billion system-wide. Approximately 70 per cent of that cost is in the pipes, Karney says. That’s a large investment to bury and forget about, which is why the assessment of performance and deterioration are so important.

Inefficiencies in water systems have important economic and environmental repercussions. Better diagnostic tools being developed will allow for significant changes in operations, such as improved pump maintenance and scheduling. These new technologies have the potential to drastically lower costs and emit fewer greenhouse gases.

“No system lasts forever,” Karney muses. “They will break down. We have to develop diagnostic tools that can anticipate when our systems are going outside their zone of operation. We need to be pro-active instead of reactive.”

Karney sees a future in which we will constantly pay attention to the performance of our systems. “We are developing the technology to understand turbines, to understand pumps, to understand conduits and conveyance systems, so that they can tell us what they are doing and how well they are performing.”


Prof. Bryan Karney is a Professor in the Department of Civil Engineering and is the Associate Dean of Cross-Disciplinary Programs in the Faculty of Applied Science and Engineering.