Brenda McCabe elected Fellow of the Engineering Institute of Canada

Brenda McCabe
This story originally appeared on U of T Engineering News by Marit Mitchell.

Brenda McCabe

Professor Brenda McCabe (CivE) is among 20 new inductees into the Engineering Institute of Canada.

Professor Brenda McCabe (CivE) has been elected a Fellow of the Engineering Institute of Canada (EIC). Each year a select number of engineers nationwide are chosen by EIC for this honour in recognition of exceptional contributions to engineering in Canada.

Professor McCabe has a distinguished record of achievement and service as an educator and an administrative leader. In 2006, she was appointed vice-dean, graduate studies — the Faculty’s first woman vice-dean. In that role, she championed a new series of ELITE (Entrepreneurship, Leadership, Innovation, and Technology in Engineering) courses that are now integral to the MEng curriculum. In 2008, McCabe was appointed chair of the Department of Civil Engineering — U of T Engineering’s first woman department chair. During her term, she worked to further increase the department’s profile, improve the student experience, integrate sustainability into the curriculum, revitalize the Gull Lake Survey Camp, and promote a sense of community amongst students, alumni, faculty and staff.

Beyond the University, McCabe is a role model and mentor to young women in her field of construction engineering and a leader in her professional community. She has held several leadership roles within the Canadian Society for Civil Engineering (CSCE), serving as vice-president, technical divisions and committees and chair of the construction division. McCabe is a Fellow of CSCE and received their Award of Excellence in 2005. She has also garnered several awards for her contributions to engineering education, including the Senior Women Academic Administrators of Canada Recognition Award and the University of Toronto Joan E. Foley Quality of Student Experience Award.

“Professor Brenda McCabe has made exceptional contributions to the Faculty and to her professional community as an engineer, educator and academic leader,”said Cristina Amon, Dean of U of T Engineering. “On behalf of our Faculty, heartfelt congratulations on this well-deserved recognition.”

Green infrastructure: New tool to help construction industry reduce carbon footprint

Originally posted on U of T Engineering News by Tyler Irving.

Professors Brenda McCabe, Daman Panesar, Shoshanna Saxe, Heather MacLean and Daniel Posen (all CivE) are collaborating with companies in construction, building services and engineering consulting to reduce the greenhouse gas impacts of future infrastructure projects. (Photo: Tyler Irving)

 

A team of researchers from U of T Engineering is partnering with the construction industry to help reduce the carbon footprint of buildings, bridges, public transit and other major infrastructure projects.

“What we’re building is a decision-support tool that can be used in the early stages of design and planning,” says Professor Heather MacLean (CivE), one of five U of T Engineering professors involved in the project. “Ultimately, the goal is to produce infrastructure with much lower greenhouse gas impact.”

While green building certification programs have existed for decades, MacLean and her collaborators — including Professors Brenda McCabeDaman PanesarDaniel Posen and Shoshanna Saxe (all CivE) — point out that these are typically considered only toward the end of the design process, when most major decisions have already been made.

“The decisions that have the most impact are the ones that are made early in the process,” says Saxe, who specializes in analysis of transit infrastructure. “These include how big it’s going to be, or what materials it will be made of. Once those are set, it really puts limits on how low the overall emissions can get.”

Nearly a year ago, the team was approached by EllisDon, a major construction and building services company headquartered in Mississauga, Ont. As part of its Carbon Impact Initiative, the company and its partners, including BASF and WSP, are collaborating on projects that aim to elevate efficiency and sustainability in the built environment.

In their early talks, the researchers and industry partners quickly identified science-based decision support in the early stages of project planning as a key strategy for emissions reduction. They plan to analyze data from previously constructed projects and publicly available databases to generate predictive tools.

“Large-scale infrastructure projects are complex, consisting of many different construction activities, along with associated inputs of material and energy,” says MacLean. “We don’t yet have good data about the on-site and supply-chain emissions associated with these inputs, especially those specific to the Ontario context. If we can cut down on that uncertainty, it will greatly help inform these types of decisions.”

Today, the Ministry of Research, Innovation and Science announced that the project was among those that received funding through the TargetGHG program, administered by Ontario Centres of Excellence, which supports industry-academic collaborations that will help the province meet more aggressive future GHG targets.

“Supporting the efforts of large industries in their quest to reduce their greenhouse gas emissions is an important part of our government’s Climate Change Action Plan,” says Reza Moridi, Minister of Research, Innovation and Science. “With the help of our province’s innovative cleantech companies, the TargetGHG program will help build a prosperous, low carbon economy and create a cleaner, more sustainable future for Ontario.”

In total, the project has attracted more than $2 million in funding from a variety of sources, including the Natural Sciences and Engineering Research Council of Canada (NSERC) as well as financial and in-kind contributions from the industrial partners.

“Taking steps to reduce the impacts of greenhouse gases and air pollution on our climate and environment is a key priority in Canada,” says Dr. Marc Fortin, Vice-President, Research Partnerships, Natural Sciences and Engineering Research Council of Canada. “NSERC is proud to partner with Ontario Centres of Excellence to connect Canada’s top researchers and companies to develop innovative clean technologies that will advance environmental sustainability in Canada and improve the health and quality of life of Canadians.”

“This project is a wonderful example of how our researchers leverage strong collaborations with industry to develop next-generation solutions to society’s most pressing challenges, including climate change,” said Ramin Farnood, Vice-Dean, Research at U of T Engineering. “This tool has great potential to enhance the sustainability of major infrastructure not just here in Ontario, but around the world.”

A second U of T Engineering project, focused on installation and testing of fast-charging stations for electric vehicles, also received funding through the TargetGHG program. Led by Professor Reza Iravani (ECE), it will be carried out in collaboration with energy storage company eCAMION.

MacLean and her team are already looking to recruit the graduate students and postdoctoral fellows who will collect and analyze the data, and continue to work closely with their industrial partners as they move forward.

“It’s exciting to be working with partners that are eager to roll out solutions,” says Posen. “We have had great meetings, and we have a strong sense they are looking to turn this research into practical results.”

The S-WORD: Defining Sustainability

#Sustainability?

Today, people argue, the power of the word ‘sustainability’ has been diluted due to overuse. What began as a noble ideal has been reduced to a mere buzzword. We sat down with some of our professors to understand how ‘sustainability’ is more than hype for them and their research.

 

Professor I. Daniel Posen
Research Focus: Providing system-scale environmental sustainability analysis for policy development

Large-scale systems are inherently complex. When holistically evaluating the ‘sustainability’ of a system a broad range of environmental, societal and economic metrics compound the matter. Naturally, a professor with such a research focus has a complicated relationship with the word ‘sustainability’. Riddled with over-hyped products, under-delivering theories and overall ‘greenwashing’, Professor Posen believes the discourse is weak.  He particularly notices the current lack of numerical definition.

Posen’s research exists at the intersection of engineering, environmental science, economics and public policy. His cross-discipline approach engenders a complete evaluation of all ‘sustainability’ efforts. It is with this integrated analysis that Professor Posen seeks to inform future system designs yielding greener outcomes.

Success in his quantitative analysis for policy development depends on capturing all factors, inputs and circumstances. The accuracy and availability of data, the consistency of modelling efforts across fields and the incorporation of nascent technologies are some challenges he must address. The variables are numerous, nuanced and involve advanced statistical analysis. Iterations are necessary to provide confidence ranges and uncertainty measurements to help craft policies.

Appropriately, Posen views ‘sustainability’ through a system-wide lens, considering the triple-bottom line inclusive of social, ecological and financial effects. He believes to operationalize ‘sustainability’ it must be reduced to measurable properties. Developing empirical tools to assess current levels, magnitude changes and confidence levels are all integral points in sustainability’s definition. Once these methodologies are in place, it is important to tell the data’s story accurately and without bias mobilizing policy makers driving real change.

With recent developments of the pan-Canadian climate framework addressing the country’s 2030 emissions reduction targets, Posen’s research plays an essential tool for government. Most recently, in conjunction with Professor Heather MacLean and a charitable environmental organization called Pollution Probe, Professor Posen is working on a white paper providing analysis to the Government of Ontario. The paper will provide guidance in provincial emissions from indirect land use change and carbon accounting for biofuels as part of both Ontario Renewable Fuel Standard and Canada’s Clean Fuel Standard.

“It is necessary to remember that though governments can shift and mandate new targets, magnitudes of change in one area will have consequences in another,” Posen says. These market-rebound and indirect effects are an important consideration in Professor Posen’s research.

“It is not as simple as implementing biofuels to reduce green house gases (GHG),” says Posen. According to the professor when addressing GHG mitigation strategies, policy makers need to consider the totality of costs and benefits associated with the proposed protocols. If a food production crop is replaced with a bio-fuel-bound crop, this change will have implications not only in the energy sector but also for world hunger and food scarcity problems. Once bio-fuel crops are harvested, refining the biomass consumes energy, processing will affect air quality and the infrastructure needed to support distribution efforts requires investment. These are only a sampling of considerations to address when evaluating and selecting among the competing uses for biomass and prioritizing GHG mitigation strategies.

Other examples of sustainability analysis issues include prioritizing certain sectors before others, market price fluctuations and accounting for technologies that currently do not exist. New developments create alternative scenarios. Policy makers forge new directions with each new regulation. Some directions will lead to fruitful and tangible results while others will lead to dead ends. Confounding the issue, attributing the origins of outcomes is difficult to disentangle empirically. Posen is working to identify new, precise measurement modelling to improve path forecasting.

Professor Posen’s previous work focused on large-scale systems at global and national levels. He is currently looking to address city-scale systems. As global leaders discuss and stipulate new green targets and frameworks, cities have an important role in implementing and driving their success.

“Often cities do not have an accurate picture of their current emission levels, for example. It proves difficult to identify necessary fundamental policy changes without data to inform the direction,” says Posen. “With increased capacity to collect, analyze and disseminate crucial data points, local officials can make substantial changes that benefit both the short and long run sustainability of cities.”

Professor Tamer El-Diraby
RESEARCH FOCUS: Construction management for societal and corporate changes

Professor El-Diraby agrees the conversation around ‘sustainability’ needs to be more than a passing fad. He notes, buzzword or not, ‘sustainability’ promotes positive results. “It is just a given nowadays,” he remarks. “Most governments, businesses and our society as a whole accept and are prioritizing its implications.”

El-Diraby notes his school-age children studying sciences are now learning through a lens of ‘sustainability’. The generational expectation for sustainable efforts is non-negotiable. Despite its hashtag status, he believes there is a general movement from generic thoughts to actionable policies and programs for energy conservation and climate change. “While we may be bored with its use, caring about these issues is the result of profound belief in ‘sustainability’,” says El-Diraby. The Professor warns that not all who use the term have noble intentions. Some companies are abusing the term and diluting its operational power.

In construction management, Professor El-Diraby focuses on more than just green technology and number crunching. He is interested in the business case, change management and the sociology of embracing ‘sustainability’. The professor is using social network analysis to help discover how communities – both citizens and professionals – view ‘sustainability’. Through crowdsourcing, the Professor is sifting through the noise uncovering interesting insights.

A large portion of his research examines how to manage and support implementation efforts for ‘sustainability’. Leveraging data analytics to help managers discover new knowledge or patterns of change, El-Diraby develops tools to help coordinate decision-making.

Across the global construction industry, many of the environmental and economic challenges with infrastructure systems are the same. However, the social aspects of ‘sustainability’ vary with the developmental phase of the city and country.

In Canada, with pre-existing infrastructure, governing bodies are seeking to change long-standing unsustainable construction practices. In a country like China, which is building new infrastructure, there is an opportunity to incorporate green construction and promote sustainable habits from the beginning. China is seeking to develop while Canada is seeking to optimize its developed systems. The methods are distinct but overall the goals remain the same.

Potential game changers are close, Professor El-Diraby believes for the construction management industry. He is confident the future is poised for many new impacts, which will improve the health and livability of our cities.

Automation | 3D printing and robotics are increasingly used. These technologies provide significant productivity improvements and elevate our capacity to examine complex problems.

Digitization | New technology called Building Information Modeling (BIM) is allowing sophisticated analysis and enhanced cross-border collaboration. The supply chain for construction design, finance and production is globalizing and yielding great benefits.

Net-generation | New construction customers are perceptive. They are acutely aware of sustainable energy options. These new players will force the industry to surpass green regulations and adapt to serve consumer demands.

Modern cities | There is a need for installing and re-configuring our infrastructure to accommodate new urban technologies such as driverless cars.

Professor Evan Bentz
RESEARCH FOCUS: Concrete and structures standing the test of time

“Sustainability is indeed a word that has become less powerful due to repeated use, but still represents an important concept,” says Professor Bentz. Speaking as a concrete expert, the term evokes similar feelings to “resilience” – which the Professor notes is also pervasive in the industry.  In both cases, Bentz believes these terms are important considerations and afford design engineers a point of reference when talking with building owners.

Bentz laughs when he recalls the reception the term artificial intelligence received during the 1980’s. Back then, engineers believed AI was probably impossible and discredited the term quickly. Fast forward to 2017 and AI is now a worthy pursuit many corporate giants are chasing. His bit of trivia elucidates; trending or not, engineers must address ‘sustainability’ today and ready themselves for the unexpected of tomorrow.

When studying concrete, Bentz uses ‘sustainability’ to imply longevity and practicality. “As engineers we need to build lasting structures and, given the constraints of the project, use materials as efficiently as possible,” says the Professor.  “In a sense, it is an attempt to provide an accounting of environmental issues previously neglected by our profession.” Improving building codes and creating increasingly efficient structures are just some of the ‘sustainability’ concepts involved in Bentz’s research.

Viewing ‘sustainability’ from a global perspective, there are only so many construction materials available on this planet. However, despite limited material types, their applications can be vastly different. The surrounding landscape of a building in Toronto is vastly different from a structure in Abu Dhabi. “This is why ‘sustainability’ issues are not taught as a single set of rules like design code regulations,” says Bentz.  “Instead they represent more of a way of thinking and that is partly why we teach ‘sustainability’ in all four years of our program.”

What important changes does the Professor foresee in the future?

Firstly, the availability of timber for large structural projects. “The stuff grows on trees,” he quips.  Another is the potential for large carbon taxes – much larger than current proposals, which could change our concrete mixes. Rather than designing with a small amount of high performance (and high strength) concrete, we might move back towards the older methods of having larger structural elements with a lower carbon footprint per cubic metre.

The most precipitous change for the professor will relate to cement production. Today, cement requires the burning of coal, which is a long-term problem. A cheap and greener method to create concrete would be a game changer for the Professor and industry at large.

Professor Marianne Hatzopoulou
RESEARCH FOCUS: Air quality, transportation and green house gases in cities

Disconcerting but repairable – describes Professor Marianne Hatzopoulou’s position on the word ‘sustainability’. She believes the term is too widely used and more often than not conveys naught. “I don’t think we should stop using it, I actually think we should straighten how it is used,” remarks the Professor.

Like Professor Posen, Hatzopoulou thinks of ‘sustainability’ as the triple bottom line. She does not appreciate the expansions and reimagining efforts people make corrupting triple bottom line’s simplicity. To the Professor, it is a straightforward concept: “We must evaluate the consequences of our decisions on the natural environment, on people and on the economy. Because without a growing economy, I don’t believe that we can be creative or sustainable,” says Hatzopoulou.

‘Sustainability’ drives her research where she specifically looks at air pollution, green house gases and transportation. She admits that her work cannot improve an entire system but, when combined with other research, there can be great change. “I don’t think any researcher can claim that their work on its own will improve the ‘sustainability’ of our cities and society but coalescing knowledge is what really matters.”

In an increasingly complex world, Hatzopoulou’s work on air pollution involves understanding the problem before outlining solutions. Transportation sources create the most air pollution in cities but there is more to the equation. Because air moves, travels, mixes and disperses, assigning responsibility is difficult. The Professor notes the motivation, not just the source of pollutants, is complicated. Those who drive may choose to do so because they do not have access to more “sustainable” forms of transportation. Policy-makers can only affect change within the constraints of their budgets. The automotive industry first and foremost must respond to customer demands. There are many factors to consider and her work looks to account for all.

Though Hatzopoulou may be dismayed by the use of ‘sustainability’ overall she believes Canadians are particularly well versed on green options. “The problem is not a lack of education, the problem exists at a governmental level where long-term and strategic planning is needed to address our uncertain sustainability in the future,” she says.

Road transport emissions and urban air quality have obvious implications to the overall health of our planet. The Professor believes one major change in the future will be autonomous vehicles and all other forms of automated transportation systems. Their ramifications on energy consumption, greenhouse gas emissions and air pollution will shape our cities and the lifestyles for all our residents.

Professor Lesley Warren
RESEARCH FOCUS: Cleaning dirty water from mineral extraction activity

Sustainability through a southern Ontario lens – is what Professor Lesley Warren calls it. In her research, when discussing the importance of ‘sustainability’, most people view the issue with an urban bias.  This is not a problem exclusive to Ontario – throughout the world, residents of urban areas often have a louder voice as over 60% of the world’s population lives in cities.

When thinking of ‘sustainability’ Prof. Warren explains people often overlook the integral role rural and underdeveloped areas of the country play in the ‘sustainability’ of our cities. “From the screens you read your emails on, to the fuel used to power commuter traffic, land far from urban centres has a direct impact on city green efforts,” Warren says.

The Professor is cautious when discussing ‘sustainability’ noting it is an ambiguous and at times pejorative term, which many exploit to oversell products, ideas or initiatives. “It is important to understand the deliverables for green efforts. Without full agreement on desired results, the word is more about marketing than driving tangible solutions,” states Warren.

An effective ‘sustainability’ definition begins with experts uniting and coalescing knowledge from across disciplines and contexts. She reiterates the complex nature of the term, noting that the many stakeholders and perspectives influence the term’s meaning.

City policies have great impacts on rural communities with close ties to the mineral extraction industry; mining wastewaters produced hundreds of kilometers away from urban environments have lasting impacts on cities’ health. Considering the interdependence, our population must come together and consolidate its efforts.

Warren recalls a poignant comment said to her years ago. After mining activity had contaminated the only water supply in a farmer’s African town, he remarked, “You can’t drink money.”  This statement has stuck with the Professor driving her efforts to measure ‘sustainability’ in more than dollar and cents. She regards stewardship, life quality and economic impacts as critical considerations to elicit the best results for the planet.

Collaborating with many mining industry leaders in her research, Warren points to the environmental champions. These advocates not only are reacting to problems, they are adopting proactive tactics. They are minimizing impacts and mining’s environmental legacy for future generations. Mineral extraction is important for the medical equipment discovering new treatments, for the microprocessor in our phones connecting loved ones across the world and for fertilizers responsible for our global food supply. And as we continue to meet our resource demands we can do so mitigating our environmental impacts.

An issue Professor Warren looks to address in the importance of sustainability is in water. It is a precious and finite resource and something the mining industry needs in vast quantities. In areas prone to water scarcity there are competing needs to address. Once minerals are extracted, the wastewater produced must be dealt with safely and securely. Upstream R&D is a focus for Warren. Engaging with industry partners, the Professor and the Lassonde Institute of Mining (LIM) and the new Lassonde Mining Hub (LMH) are pioneering new technologies that will dramatically transform the industry and create proactive solutions.

TRENDING HASHTAG OR MOBILIZING QUESTION?

It is clear that the S-word has been reduced to a hashtag moniker for a trending movement. However, the nobility of effort is something to be celebrated. Mobilizing effects are palatable if the repetition does not alienate people first. Regardless of the trend, the word must amount to more than limited improvements and prioritize significant impacts. Clearly, to do so, definition is important.

The way public discourse uses the word ‘sustainable’ is undoubtedly unsustainable. Green. Eco. Globally-conscious responsibility. The list can go on. Whatever the word choice, the motivation is there and is important to all engineers.

Evolving eco-conscious terminology aside, our professors move past the hype and define ‘sustainability’ for impact and solutions. Here is a recap:

  • Professor Posen wants more numbers.
  • Professor El-Diraby wants to move past generic ideas to thoughtful examination.
  • Professor Bentz wants to ignore the over-use and see the term for that which it inspires.
  • Professor Hatzopoulou wants the term straightened-out.
  • Professor Warren wants a dual-lens from both urban and rural perspectives.

#EveryDropMatters: Five ways U of T engineering research is enhancing water sustainability

Amy Bilton, an assistant professor of mechanical engineering, and graduate student Ahmed Mahmoud examine a model of a passive aerator for fish farms that they are designing (photo by Roberta Baker)
Posted on August 16, 2017 | Originally Appeared on U of T News by: Tyler Irving

 New exhibit brings water research and innovation to Canadian National Exhibition

 Fresh water, salt water, wastewater, industrial water, drinking water: all water on Earth is part of the same cycle – and every drop matters. Yet around the world, water supply and quality is under increasing pressure from growing populations, industrial development and climate change.

Researchers at U of T’s Faculty of Applied Science & Engineering are leading the way in addressing these pressing global challenges. Professors and students are working together to use UV light to destroy chemical contaminants, develop low-cost solutions for sanitation and effectively control and mitigate pollution by studying and deploying ancient organisms.

During the 2017 Canadian National Exhibition, U of T engineering students will showcase the innovative and multidisciplinary solutions being developed in the faculty. At this interactive exhibit, CNE attendees can test their awareness of water consumption and conservation topics with a short quiz, share on social media and win a reusable water bottle.

Here are five ways that U of T engineering researchers are addressing pressing water challenges, across Canada and around the world:

Purifying drinking water


Zhjie Nie takes a sample at a Toronto-area drinking water treatment plant for her project on using activated carbon to remove contaminants (photo by Ron Hofmann)

From caffeine to birth control pills, most of the drugs we take pass through our bodies into wastewater and eventually into lakes and rivers. To keep our drinking water clean, we need new strategies to remove these pollutants.

In partnership with a number of municipalities, Robert Andrews, a professor of civil engineering, and Ron Hofmann, an associate professor of civil engineering, are testing a set of new approaches known as advanced oxidation. They blast water with everything from ultraviolet light to ozone, breaking down chemical compounds and leading to safer and cleaner drinking water.

Learn more about Andrews’ and Hofmann’s research

Restoring contaminated groundwater

photo of sleeping lab
Brent Sleep oversees the establishment of the Remediation Education Network, which researches new technologies to decontaminate soil and groundwater (photo by Roberta Baker)

Across North America, thousands of sites have been contaminated with industrial compounds. These contaminants can be degraded by bacteria, but the process is slow.

Brent Sleepa professor of civil engineering, and his team are tackling the challenge through a project called Innovative Technologies for Groundwater Remediation (INTEGRATE). The INTEGRATE team is accelerating the process by pre-treating soil and inserting custom communities of more efficient bacteria that break down contaminants more quickly.

Elizabeth Edwards, a professor of chemical engineering, also pursues this approach and has developed a commercial product that is particularly good at degrading chlorinated compounds, formerly used in dry cleaning facilities: a community of microbes called KB-1. More recently, she’s developed a new microbial community that can degrade benzene, toluene, ethylbenzene and xylenes – collectively known as BTEX – in soil and groundwater.

Learn more about Sleep’s research

Learn more about Edwards’ research

Sustainable sanitation


A team of U of T engineers has been hard at work building a better toilet for the 2.5 billion people who lack access to safe sanitation (photo by Centre for Global Engineering)

Worldwide, about 2.5 billion people – a third of the global population – have no access to safe sanitation. This lack of hygiene is linked to the spread of many preventable diseases, such as diarrheal diseases that kill more than 500,000 children under the age of five every year.

A team led by chemical engineering professor and director of the Centre for Global Engineering, Yu-Ling Cheng, is developing a waterless toilet that can disinfect human waste without connections to water, sewer or grid power. With a total cost of less than five U.S. cents per person per day, it is designed for users in the developing world.

Learn more about Cheng’s research

Designing for stormwater


Jennifer Drake and her students research ways to design our urban infrastructure to be resilient to storm surges, including this catchbasin shield that can capture sediments from stormwater runoff (photo by Pavneet Brar)

Buildings and roadways are designed to get rid of water as quickly as possible – but that can be a disaster during heavy rains, when it often leads to urban flooding.

Jennifer Drake, a professor of civil engineering, is using technologies such as water-permeable pavement to restore natural flow systems, which allow groundwater deposits to recharge more slowly and encourage river-like flows of runoff. She is also optimizing the design and cost-effectiveness of green roofs, which can reduce peak stormwater flows.

Learn more about Drake’s research

Rethinking resource extraction remediation

Lesley Warren (standing, at right) and her colleagues are mining the genomes of microbes that thrive in wastewater generated by the resource extraction industry (photo courtesy of Lesley Warren)

The mining and resource extraction industries generate millions of litres of contaminated wastewater annually, the chemistry of which is controlled by ancient microorganisms that breathe minerals in order to survive. An academic-industrial collaboration led by Lesley Warren, a professor of civil engineering and director of the Lassonde Institute of Mining, is studying the genomes of these organisms, gaining insight that could help both clean up contaminated water and prevent pollutants from forming in the first place.

Learn more about Warren’s research

Nine Engineering professors and alumni inducted into the Canadian Academy of Engineering

Nine Engineering professors and alumni inducted into the Canadian Academy of Engineering

Professor Robert Andrews’ work has lead him to solve real-world problems for drinking water safety.

Nine members of the U of T Engineering community have been inducted as fellows of the Canadian Academy of Engineering (CAE). Professors Robert Andrews (CivE), Sanjeev Chandra (MIE), Tom Chau (IBBME), Heather MacLean (CivE) and Wei Yu (ECE), along with alumni Perry Adebar (CivE MASc 8T7, PhD 9T0), Mark Hundert (IndE 7T1), Christopher Pickles (MMS 7T4, MASc 7T5, PhD 7T7) and John Young (MMS 7T1, MIE MASc 7T4) are among the CAE’s 50 new fellows. The CAE is a national institution through which Canada’s most distinguished and experienced engineers provide strategic advice on matters of critical importance to Canada. The new CAE fellows were inducted on June 26 in Ottawa, as part of the Academy’s Annual General Meeting and Symposium.

“The Academy’s recognition of so many faculty and alumni attests to the tremendous contributions U of T Engineers are making in Canada and around the world,” said Dean Cristina Amon. “It also demonstrates their impact in all aspects of the engineering profession — from engineering education to fundamental research to technology transfer, commercialization and consulting.”

Robert Andrews holds the NSERC Industrial Research Chair in Drinking Water Research, working with industry partners who serve over four million people in Southern Ontario. His collaborations with municipalities have allowed him to solve real-world problems that have a direct impact on the safety of Canada’s drinking water supply. An expert in drinking water treatment, Andrews is a member of several decision-making committees and advisory councils in Canada and the United States. His work has been recognized with prestigious awards from the Engineering Institute of Canada, the Canadian Society for Civil Engineering, and the American Water Works Association, among others.

Sanjeev Chandra is co-founder of the University of Toronto’s Centre for Coating Technologies, one of the world’s leading research centres in the area of thermal spray coatings. He has collaborated with research groups and industrial partners around the world in the development of cutting-edge technology in this area. Chandra’s work has been applied in the fields of spray coating and forming, spray cooling, ink jet printing, agricultural spraying and forensic science. He is a fellow of the American Association for the Advancement of Science, the American Society of Mechanical Engineers, and the Canadian Society for Mechanical Engineering, and received the NSERC Brockhouse Prize.

Through his research at Holland Bloorview and U of T, Tom Chau has developed assistive technologies which give children and youth with severe physical limitations the ability to communicate independently. Chau created the award-winning Virtual Music Instrument, which allows individuals with disabilities to express themselves through music. Additionally, he has pioneered optical brain-computer interfaces which allow nonverbal individuals to communicate through thought alone. Chau is a fellow of the American Institute for Medical and Biological Engineering and the recipient of several awards. In 2011 he was named one of 25 Transformational Canadians by The Globe and Mail.

Heather MacLean is an internationally recognized leader in sustainable systems analysis, including life cycle assessment and its application to energy systems and vehicles. Her work has led to sustainability assessment and life cycle assessment being viewed as critical tools by industry, government and other organizations, and has guided regulations such as California’s Low Carbon Fuel Standard. MacLean is an advisor to the World Bank/World Resources Institute for Sustainable Transportation. She is a fellow of the Engineering Institute of Canada and recipient of the Canada Mortgage and Housing Corporation Excellence in Education Award for Promotion of Sustainable Practices.

Wei Yu has made highly influential contributions to the field of information theory and communication engineering. His research addresses fundamental limits of information transmission in communication networks. Yu proposed dynamic spectrum management methods that have been used in millions of digital subscriber lines worldwide and also contributed significantly to the capacity analysis and optimization techniques for multiuser multiple-input multiple-output (MIMO) wireless communication channels, which are widely used in cellular networks. Professor Yu is an IEEE fellow, recipient of the NSERC E.W.R. Steacie Memorial Fellowship, and a Thompson Reuters Highly Cited Researcher.

Perry Adebar has made important contributions to the profession and practice of engineering in Canada. An award-winning educator, he is known for presenting a strong connection between theory and engineering practice, and his views are highly respected by industry. He is head of UBC Civil Engineering, and was previously associate dean of Applied Science at UBC. His research has had a direct impact on the seismic design of high-rise concrete buildings in Canada. Professor Adebar has provided engineering advice to several consulting engineering firms. He is a director of the Structural Engineers of B.C. and a member of the Canada TF-1 HUSAR Team.

Mark Hundert is a pioneer in the application of industrial engineering and operations research practices in order to improve the delivery of health care in Canada. He has helped to introduce principles and methodologies to improve the efficiency and effectiveness of our hospitals and other health care organizations. Among his many contributions in this field, Hundert spearheaded the development of a national database benchmarking the efficiency and quality of care in Canadian hospitals, which has been an essential tool in identifying and addressing areas needing improvement in the Canadian health care system. He received the Ontario Professional Engineers Management Medal in 2008.

A leading authority on microwave heating for metallurgical applications, Christopher Pickles has been a pioneer in the development of microwaves for processing ores, precious metal residues, and waste materials. Other major contributions include the use of extended arc plasma reactors for the treatment of electric furnace dusts and generation of ferro-alloys. Professor Pickles has presented short courses for industry, mentored close to 70 researchers, published over 170 papers, coedited five conference volumes and coauthored a textbook on Chemical Metallurgy. He is a fellow of the Canadian Institute of Mining, Metallurgy and Petroleum and has won national awards.

John Young has been eminently successful in the generation and application of new knowledge associated with primary steelmaking operations. He has provided exceptional engineering leadership in simulation modelling and commissioning of numerous steelmaking plants within Canada and abroad. He has coauthored a textbook entitled “Metallurgical Plant Design” and made significant contributions to the training of engineers in industry, as well as engineering students at both McGill and U of T, where he serves as an adjunct lecturer and instructor for MSE 450: Plant Design for Materials Process Industries. Throughout his career, Young has been an excellent ambassador for the engineering profession. He has received a number of high profile awards from AIME’s Iron and Steel Society.

Originally appeared on U of T Engineering News by Carolyn Farell | Posted on June 27th, 2017