Daniel Posen: new CivE faculty explores the relationship between public policy and the environment

In an increasingly interconnected and interdisciplinary world, the Department of Civil Engineering was pleased to welcome Prof. I. Daniel Posen as a new faculty member in January 2017.

We asked him a couple questions about his new appointment:

Could you explain the focus and (potential) impact of your research?

I usually describe my research as ‘system-scale environmental sustainability analysis,’ which basically means that I’m trying to understand the big picture when it comes to how both public and private decisions impact the environment. A key goal of this work is to help government and industry tailor their policies and investment decisions to improve environmental outcomes. Much of my work focuses on prioritizing greenhouse gas reduction strategies, especially when choosing among competing uses for biomass (energy/materials derived from plants), and within the urban environment. I also plan to incorporate a broader range of environmental metrics (e.g., related to air & water quality or resource use) to provide a holistic evaluation of these systems, and others.

Your academic background is unique, can you explain why your interests have varied from chemistry to economics to public policy to engineering?

There is actually a common theme linking my degrees together: sustainability. The research I do is inherently interdisciplinary, using tools from natural sciences, engineering, economics, and policy analysis. There is a lot of important work being done in each of these disciplines, and one of the biggest challenges is about how to link these different areas together to design systems with the best social and environmental outcomes. This is a key goal of my work, so it has been a real asset to have a background in these different fields.

Why did you choose U of T?

I’m originally from Toronto, and am passionate about doing research that benefits both Canada and the world. U of T is a top university in Canada, which has both a rich set of colleagues with whom I can collaborate, and allows me to work with some of the best students. The city of Toronto is also a great place to live and is an excellent environment for researching urban-scale sustainability.

 

What are you most looking forward to in your new position?

I really do love all aspects of the job: research, teaching, engaging with young researchers, being in an academic environment, etc. One thing that’s particularly exciting about being new here is the prospect of building new collaborations and starting to work with a whole new group of students and colleagues.

As a new professor, what one piece of advice would you give to new students?

For undergrads, I’d say it’s important to focus on key foundational skills in engineering, math, statistics and the like, but don’t neglect the broader picture – take advantage of your elective courses and make sure to step outside your field once in a while. For graduate students, likewise, start thinking early on about what skills you want to develop, and put in place a plan to develop them. At the same time, don’t fall into the temptation of only using those skills – make sure the tools you’re using fit the problem you want to answer.

What do you hope to accomplish in your new position/during your time at U of T Engineering?

Like most professors, I’d say my mission is two-fold: make an impact with my research, and train the next generation of practitioners and scholars. In my case, that means I hope to help craft sensible environmental strategies at the local, national and global scale, while training our engineering graduates to think carefully and holistically about how they influence the systems around us.

Infrastructure’s impact: How public transit investments affect our environment

Professor Shoshanna Saxe (CivE) analyses the environmental and social impact of large public transit infrastructure projects, informing policymakers as they decide which investments to make. (Photo: Tyler Irving)
Professor Shoshanna Saxe (CivE) analyses the environmental and social impact of large public transit infrastructure projects, informing policymakers as they decide which investments to make. (Photo: Tyler Irving)

Professor Shoshanna Saxe (CivE) analyses the environmental and social impact of large public transit infrastructure projects, equipping policymakers with data as they decide which investments to make. (Photo: Tyler Irving)

 

This story originally appeared at U of T Engineering News

The benefits of building public transit include reducing greenhouse gas emissions, relieving traffic congestion and expanding a growing city. Yet each transit project is unique, and predicting its future effectiveness is difficult. Professor Shoshanna Saxe (CivE) crunches the numbers on existing infrastructure to provide key decision-makers with a ‘reality check’ on the environmental and social impacts of today’s transit investments.

“Engineers usually aren’t involved in policymaking, and policymakers usually aren’t involved in engineering,” says Saxe. “I’m trying to bridge that gap.”

Saxe joined U of T Engineering in August 2016. Before completing her PhD at the University of Cambridge, she spent three years at a major consulting engineering firm in Toronto, working on projects such as the Eglinton Crosstown transit line and the Toronto-York Spadina subway extension.

“I love design, it’s amazing,” she says. “However, when you’re building things that people are going to use, you have to stay well within the limits of what you know for sure. I was curious about questions that we didn’t already know the answers to.”

During her PhD, Saxe conducted a detailed analysis of the London Underground’s extension of the Jubilee Line, completed in 1999. She gathered data on the greenhouse gases produced during construction and operation of the line, then used transit and land-use surveys to estimate the reduction of greenhouse gas emissions attributable to people using the line and living near it. By combining the two, she could calculate the net environmental benefit of that transit project.

“It turned out to be a bit of a mixed bag,” she says. “If you make some optimistic assumptions, you could say that it broke even in terms of greenhouse gas emissions around 2012 or 2013. If you are more pessimistic, you’re looking at a greenhouse gas payback of twice as long.”

Saxe says that the Jubilee Line extension sees approximately 175 million trips per year. On projects where ridership is low, the environmental payback period can be much longer. Saxe also studied the Sheppard subway line in Toronto, and found that with a much lower ridership it initially struggled to provide greenhouse gas savings. Over time, the Sheppard Subway Line has benefited from the decreasing emissions associated with electricity in Ontario. The results of the Sheppard Subway study were recently published in the journal Transportation Research Part D: Transport and Environment.

“If you’re at Don Mills station, and you want to go north, east, or even southeast, the network doesn’t serve you yet,” she says. “We still see people from that area driving 70 per cent of the time, so unfortunately there’s just a lot less opportunity for savings.”

Saxe says that her dream project would be to follow a major piece of infrastructure, such as a new transit line, from its conception through construction and use for 20 or 30 years — essentially throughout her career.

“I want to answer questions like: why did we originally build it, how did we originally build it, how did it perform over its lifetime, how did we maintain it and what did it need?” she says. “If we know how our present decision-making affects things decades from now, we can make better decisions.”

Could microbes hold the key to more environmentally friendly mines? | The Northern Miner

Prof. Lesley Warren in The Norther Miner, January 9, 2017.

 

Geochemist and professor Lesley Warren (right) collects water samples for geochemical analyses from a waste deposit undergoing reclamation.

Ancient microbes could offer insight on better mining wastewater strategies

Professor Lesley Warren (standing, at right) and her colleagues are mining the genomes of microbes that thrive in wastewater generated by the resource extraction industry. Insights into how these organisms derive energy from metals and sulphur compounds could lead to new strategies for preventing pollution and optimizing mine reclamation. (Photo courtesy Lesley Warren)

This story originally appeared on U of T Engineering News.

Professor Lesley Warren (standing, at right) and her colleagues are mining the genomes of microbes that thrive in wastewater generated by the resource extraction industry. Insights into how these organisms derive energy from metals and sulphur compounds could lead to new strategies for preventing pollution and optimizing mine reclamation. (Photo courtesy Lesley Warren)

Professor Lesley Warren (standing, at right) and her colleagues are mining the genomes of microbes that thrive in wastewater generated by the resource extraction industry. Insights into how these organisms derive energy from metals and sulphur compounds could lead to new strategies for preventing pollution and optimizing mine reclamation. (Photo courtesy Lesley Warren)

Wastewater from a mine doesn’t sound like a cozy habitat, but for untold numbers of microorganisms, it’s home sweet home. A new research project led by Professor Lesley Warren (CivE) will examine how these microbes make their living by studying their genes — an insight that could help further reduce the environmental footprint of the mining industry. The $3.7-million endeavour is funded in part by Genome Canada through the Large Scale Applied Research Projects (LSARP) program.

Extracting valuable metals such as copper, nickel and gold from rocks, which typically contain only a few weight percent metals, requires substantial amounts of water. All wastewater generated must be cleaned to strict federal guidelines before it can be discharged back into the environment. It is these wastewaters that the microorganisms studied by Warren and her team thrive in.

“These wastewaters contain a variety of sulphur compounds that certain bacteria can use for energy,” says Warren, who holds the Claudette Mackay-Lassonde Chair in Mineral Engineering at U of T. “Their ability to do so evolved billions of years ago, long before more complex life arrived on the scene. If the history of Earth were a 24-hour clock, they have been around for over 23 hours, while we humans have been around for only 17 seconds.”

However, our ability to investigate these bacteria and most importantly how they are cycling these sulphur compounds, which will influence the quality of mining wastewaters, has been very limited until now. If these sulphur compounds become too concentrated, the company has to implement costly chemical treatment systems to make the water acceptable for release and avoid toxicity problems in lakes or streams downstream from the mine.

Dr. Lesley Warren is the Claudette MacKay-Lassonde Chair in Mineral Engineering within the Department of Civil Engineering.

Dr. Lesley Warren is the Claudette MacKay-Lassonde Chair in Mineral Engineering within the Department of Civil Engineering.

Warren believes that genomics can help. She has spent years travelling mine sites from Canada to South Africa to better understand the sulphur geochemistry of their wastewaters and how bacteria are implicated. “I have always preferred dirty water to clean,” she jokes.

For this project, Warren and her team will apply genomics directly in tandem with comprehensive geochemical analyses and modeling to wastewaters. She will collaborate closely with Professor Jill Banfield, a trailblazer in environmental genomics at the University of California, Berkeley, Professor Christian Baron, a microbial biochemist from the Université de Montréal, and Dr. Simon Apte, a research scientist in analytical chemistry and geochemical modeling from Australia’s Commonwealth Scientific and Industrial Research Organization (CSIRO) Land and Water in Australia, to unravel the role played by these sulphur-loving microbes in important geochemical processes affecting mining wastewaters.

“Mining companies know that microorganisms are driving these reactions, but its still a black box” says Warren. “The lack of available technologies has meant that there has been little research to determine which bacteria are doing what, which ones could serve as early warning signals, or those that could actually be used as the biological treatment itself. Most importantly, mining companies don’t know which levers to pull to control the system.”

Those levers are what Warren and her colleagues aim to identify. Informed by genomic and geochemical insights they plan to develop new tools that can help mine managers make better decisions about how to manage their wastewater. “Once we understand the microbes and how they affect wastewater geochemistry, we can pinpoint the drivers of their behaviour: Which wastewater compounds are they using? Do they like it hot? Do they like it cold? We can adjust those drivers to design new processes that do what we want them to do. Essentially we are mining the bacteria that already exist in these wastewaters as a biotechnology resource.”

With this new knowledge, mines could ensure conditions that encourage the growth of organisms that break down toxic compounds, or prevent the growth of organisms that produce those toxic compounds in the first place. The team is collaborating with three Canadian mining companies, as well as two engineering consulting firms, Advisian and Ecological and Regulatory Solutions. In addition, the Mining Association of Canada, the Ontario Mining Association and CSIRO are further supporting the project.

The project also has the endorsement of the Canadian Institute of Mining, Metallurgy and Petroleum (CIM), the leading not-for-profit technical society of professionals in the Canadian minerals, metals, materials and energy industries. CIM National Executive Director, Jean Vavrek, commented: “CIM are in full support of this exciting new project.  While genomics itself is relatively new to the mineral resource industry, it has the potential to provide significant returns and generate new areas for investment in the sector.  We consider this a flagship project and will continue to follow Dr. Warren and her team closely as they pioneer genomics research for mine wastewater characterization and possibly treatment.”

“The mining industry has driven this project from its inception because they want to reduce their environmental footprint. Harnessing the biological potential of their wastewaters will facilitate the development of such strategies to achieve this goal,” says Warren. “So many of the organisms we’re finding are new to science. The chances that we are going to find organisms that are capable of doing creative things that could be useful are very high.”