Heat, housing and health: Marianne Touchie and the complexity of multi-unit residential buildings

Professor Marianne Touchie (CivE, MIE) is working with Toronto Community Housing and The Atmospheric Fund to better understand how changes to energy use affect indoor environmental quality in multi-unit residential buildings. Toronto Public Health is collaborating to use their data to inform policy. (Photo: Kevin Soobrian)

Professor Marianne Touchie (CivE, MIE) is working with Toronto Community Housing and The Atmospheric Fund to better understand how changes to energy use affect indoor environmental quality in multi-unit residential buildings. Toronto Public Health is collaborating to use their data to inform policy. (Photo: Kevin Soobrian)

Professor Marianne Touchie (CivE, MIE) is working with Toronto Community Housing and The Atmospheric Fund to better understand how changes to energy use affect indoor environmental quality in multi-unit residential buildings. Toronto Public Health is collaborating to use their data to inform policy. (Photo: Kevin Soobrian)


This story originally appeared at U of T Engineering News

This story is a part of a  five-part #RisingStars series, highlighting the work of our early-career professors.

In cities from coast to coast, condominium towers are being constructed at an unprecedented rate, with 30,000 new units added in 2015 to the Toronto market alone. This is driven both by recent advances in the design, engineering and construction of tall buildings, and a stark increase in demand for these multi-unit residential buildings (MURBs). “More people are moving downtown,” says Professor Marianne Touchie (CivE, MIE). “There’s very limited space, so we need high-density housing options and MURBs provide that.”

With a background in building science, Touchie studies the relationships between energy efficiency and indoor environment quality parameters, such as thermal comfort, in these high-density buildings. In Toronto, one of the largest suppliers of MURBs is Toronto Community Housing Corporation (TCHC), which owns 50 million square feet of residential space and houses 110,000 residents. Many of these are older buildings without air conditioning.

“A lot of these buildings rely on ventilation through the building envelope, which is not terribly effective. At the same time, we need to reduce our energy consumption and energy use,” she says. “But reducing energy usage has implications for occupants, and that’s what I’m interested in studying.”

Touchie is currently collaborating with The Atmospheric Fund (formerly the Toronto Atmospheric Fund) on a large research project—one that she has been involved with since her role as their Building Research Manager from 2014 to 2015. She and her colleagues are collecting data on energy consumption, temperature, humidity and carbon dioxide concentration in more than 70 apartments spanning seven different TCHC buildings.

“It’s probably the most comprehensive MURB monitoring project in North America, if not the world,” says Touchie.

They are also working with Professor Jeffrey Siegel (CivE), who is examining concentrations of formaldehyde, particulate matter and, through a partnership with Health Canada, radon concentrations. Touchie says that collaborations, such as those with TCHC, The Atmospheric Fund and Siegel, are critical to creating a comprehensive picture of the MURBs she studies. “Buildings are so complex,” says Touchie. “I have training in one particular area, but I’m not an indoor air quality expert. When we make changes from an energy perspective to the ventilation system, or the heating and cooling system, it has an influence on the air quality. Working with other experts, like Professor Siegel, we can gather data on all sides.”

Touchie’s findings with The Atmospheric Fund and TCHC have drawn the interest of Toronto Public Health. The agency is interested in the health impact of extreme heat, and the study has found that these TCHC buildings are often overheated, especially in the summer.

“Extreme heat is a health problem, especially for the most vulnerable populations,” says Sarah Gingrich, a Health Policy Specialist at Toronto Public Health. Very young children, the elderly and people with illnesses or taking certain medications are most at risk. “This work is providing evidence that excessive heat is a problem in older apartment buildings in Toronto. The research is showing that although the temperature cools down at night outside, in these buildings it rises during the day and they stay hot all night long.”

Touchie and her collaborators are finding that a major culprit for the inefficient heating and cooling performance is uncontrolled air leakage. These leaks often occur around windows, doors, exhaust fans and elevator shafts. But inefficiencies aren’t just a building issue: she adds that “because people can do whatever they want in their own homes, like open and close their windows, MURBs combine the complexity of high-rise buildings with the occupant wild card,” which makes managing the indoor environment even trickier.

“The study provides valuable information on Toronto apartment buildings that will help to inform policy development,” says Toronto Public Health’s Gingrich. “It fills a very important gap by providing up-to-date data that highlights some of the challenges in this type of building, and points to potential solutions.”

Next, Touchie hopes to expand her research to newer condos, where data is even scarcer. “They’re going up so quickly, and we really have no information about the quality of the indoor environment or their energy performance,” she says. “I am very curious whether their energy consumption matches the performance level promised at the design stage.”

Two U of T Engineering researchers awarded Canada Research Chairs

In the latest round of Canada Research Chair announcments, Engineering professors Penney Gilbert (left) and Marianne Hatzopoulou (right) were named as Tier 2 chairholders. The CRC program aims to help Canada attract and retain research leaders in engineering and the natural sciences, health sciences, humanities and social sciences.
This story originally appeared on U of T Engineering News.
In the latest round of Canada Research Chair announcments, Engineering professors Penney Gilbert (left) and Marianne Hatzopoulou (right) were named as Tier 2 chairholders. The CRC program aims to help Canada attract and retain research leaders in engineering and the natural sciences, health sciences, humanities and social sciences.

In the latest round of Canada Research Chair announcments, Engineering professors Penney Gilbert (left) and Marianne Hatzopoulou (right) were named as Tier 2 chairholders. The CRC program aims to help Canada attract and retain research leaders in engineering and the natural sciences, health sciences, humanities and social sciences.

Professors Penney Gilbert (IBBME) and Marianne Hatzopoulou (CivE) have been named Tier 2 Canada Research Chairs (CRCs) in an announcement made today by federal science minister Kirsty Duncan at the University of Toronto Factor-Inwentash Faculty of Social Work.

The two U of T Engineering researchers are among the 25 U of T faculty members to receive CRC appointments. They join 216 current chairholders across the University of Toronto.

“I would like to extend my heartfelt  congratulations to the new and renewed Canada Research Chairs. The Government  of Canada is proud to support talented researchers whose hard work will improve  our scientific understanding and strengthen Canada’s reputation for research  excellence,” said Minister Duncan, who is herself a U of T alumna. “The Chairs’ efforts will also provide us with the evidence needed to inform decisions that help us build a vibrant society and a strong middle class.”

Professor Hatzopoulou holds the CRC in Transportation and Air Quality for her research into how emissions are generated by on-road vehicles, dispersed in urban environments and who is exposed. Through her collaborative work with epidemiologists and health scientists, Hatzopoulou is working to better understand how traffic patterns, road design and characteristics of the built environment can be modified to improve urban air quality and help vulnerable individuals reduce their exposure.

“Receiving this appointment is an opportunity to advance research in an area of growing concern for rapidly expanding world cities,” said Hatzopoulou. “It will also help provide scientific evidence for the often controversial decisions on urban transportation system expansions and their effects on the air we breathe.”

“I am very honoured by this appointment, and for the recognition of my research team’s efforts toward unlocking the secrets that permit the human body to heal itself,” said Gilbert, who was named the CRC in Endogenous Repair. She received the appointment for her research into the cues that “wake up” muscle stem cells and direct them to repair skeletal damage. Along with her team, Gilbert hopes to decipher these cues and inform the development of new drugs, therapies and treatments that restore strength to muscles that are wasting as a result of aging or disease.

“We’re extremely proud of the leadership and research excellence demonstrated by Professors Hatzopoulou and Gilbert, and I am pleased to congratulate them on this recognition,” said Professor David Sinton (MIE), interim vice-dean, research for the Faculty of Applied Science & Engineering. “We’re also grateful for this investment in our Faculty as our researchers continue to work across disciplines to address the world’s most pressing challenges.”

The CRC program was launched in 2000 to help the country attract and retain research leaders in engineering and the natural sciences, health sciences, humanities and social sciences. Tier 1 Chairs last for seven years, and recognize outstanding researchers acknowledged by their peers as world leaders in their fields. Tier 2 Chairs are for exceptional emerging researchers and last for five years.

The link between air quality and human health

Jeffrey Siegel
Jeffrey Siegel

Among other things, Professor Jeffrey Siegel (CivE) studies air filters to get detailed, quantitative information about exposure to environmental contaminants in offices and homes. (Photo: Tyler Irving)

This story originally published by U of T Engineering News.
When it comes to air quality, most people think car exhaust, industrial emissions and smog pose the biggest dangers. But Professor Jeffrey Siegel (CivE) says it’s the environment inside our homes and offices that should concern us most.“We spend about 90 per cent of our time indoors,” says Siegel. “And in a place like Toronto, the air inside is generally dirtier than outside.”Siegel and his team regularly collect air filters from furnaces in both private homes and commercial buildings and analyze what they find stuck to them. “It’s a very rich history of what you’ve been exposed to in the air: metallic particles, flame retardants, plasticizers and more,” he says about this process, which he has dubbed “filter forensics.”

Siegel and his team care about the kinds of pollutants they find, but they’re even more interested in measuring how much of each type is present in the filter. Based on the size of the house, the amount of time since the filter was installed, how often the furnace runs and other parameters, they can use those concentrations to estimate the levels of pollutants in the air over the life of the filter, and by extension, the effects on human health.

So what are the biggest concerns? “It’s an amazingly long list, but number one would probably be particulate matter,” says Siegel. These are solid or liquid particles that range in size from visible motes of dust to stuff that is so small it’s hard to see even with a microscope. The particles can be small pieces that broke off of something large — skin flakes or drywall dust — or they can form as aggregations of chemical compounds, such as volatile organic molecules from paint.

The health effects of these particles vary greatly depending on what they’re made of, their size and concentration. The link between smoking and lung cancer is well known. For other materials, such as the particles that come from cooking on a gas or electric stove, the subtle effects are still being teased out by scientists. Still, the general weight of evidence is that the more particles floating in the indoor air, the more likely people are to experience negative health effects.

So how do we keep our building air clean? The air filter in your furnace can do a lot, but only if you buy the right kind. “The average air filter does nothing for your health; it’s there to protect the equipment,” says Siegel.

Although they are slightly more expensive, better filters that have higher efficiency ratings or contain activated carbon are effective in combatting chemical pollutants such as ground-level ozone, which goes straight through traditional filters. One of Siegel’s recent studies has shown that for commercial and some residential buildings, the benefits of these filters justify their higher cost.

Some of the things that are often perceived as improving indoor air quality are not effective at all. Office plants, while nice to look at, offer almost no protection from indoor air pollution. “The average room exchanges its entire volume of air about once an hour,” Siegel says. “The amount of air that flows through a plant is tiny compared to that.” In other words, you’re better off changing your air filter than cultivating a small garden of ferns.

Another branch of Siegel’s research looks at the various bacteria, fungi and other microorganisms that can be found in indoor air. A growing body of evidence points to the importance of maintaining a healthy diversity in the microbial community that lives inside our own bodies, and the same principle might also apply to buildings. “We try and understand why the community in this building is different from the community in that one,” says Siegel. “The ultimate goal, and frankly this is far in the future, is to see if we can take advantage of this to improve the health of indoor environments.”

Siegel describes the world of indoor air quality as “amazingly unexplored” and says that’s a big part of its appeal for him. “What’s kept me in it is that it’s just so diverse,” he says. “I really love buildings, and I want to make a difference. For me, that’s a great fit.”