Nine Engineering professors and alumni inducted into the Canadian Academy of Engineering

Nine Engineering professors and alumni inducted into the Canadian Academy of Engineering

Professor Robert Andrews’ work has lead him to solve real-world problems for drinking water safety.

Nine members of the U of T Engineering community have been inducted as fellows of the Canadian Academy of Engineering (CAE). Professors Robert Andrews (CivE), Sanjeev Chandra (MIE), Tom Chau (IBBME), Heather MacLean (CivE) and Wei Yu (ECE), along with alumni Perry Adebar (CivE MASc 8T7, PhD 9T0), Mark Hundert (IndE 7T1), Christopher Pickles (MMS 7T4, MASc 7T5, PhD 7T7) and John Young (MMS 7T1, MIE MASc 7T4) are among the CAE’s 50 new fellows. The CAE is a national institution through which Canada’s most distinguished and experienced engineers provide strategic advice on matters of critical importance to Canada. The new CAE fellows were inducted on June 26 in Ottawa, as part of the Academy’s Annual General Meeting and Symposium.

“The Academy’s recognition of so many faculty and alumni attests to the tremendous contributions U of T Engineers are making in Canada and around the world,” said Dean Cristina Amon. “It also demonstrates their impact in all aspects of the engineering profession — from engineering education to fundamental research to technology transfer, commercialization and consulting.”

Robert Andrews holds the NSERC Industrial Research Chair in Drinking Water Research, working with industry partners who serve over four million people in Southern Ontario. His collaborations with municipalities have allowed him to solve real-world problems that have a direct impact on the safety of Canada’s drinking water supply. An expert in drinking water treatment, Andrews is a member of several decision-making committees and advisory councils in Canada and the United States. His work has been recognized with prestigious awards from the Engineering Institute of Canada, the Canadian Society for Civil Engineering, and the American Water Works Association, among others.

Sanjeev Chandra is co-founder of the University of Toronto’s Centre for Coating Technologies, one of the world’s leading research centres in the area of thermal spray coatings. He has collaborated with research groups and industrial partners around the world in the development of cutting-edge technology in this area. Chandra’s work has been applied in the fields of spray coating and forming, spray cooling, ink jet printing, agricultural spraying and forensic science. He is a fellow of the American Association for the Advancement of Science, the American Society of Mechanical Engineers, and the Canadian Society for Mechanical Engineering, and received the NSERC Brockhouse Prize.

Through his research at Holland Bloorview and U of T, Tom Chau has developed assistive technologies which give children and youth with severe physical limitations the ability to communicate independently. Chau created the award-winning Virtual Music Instrument, which allows individuals with disabilities to express themselves through music. Additionally, he has pioneered optical brain-computer interfaces which allow nonverbal individuals to communicate through thought alone. Chau is a fellow of the American Institute for Medical and Biological Engineering and the recipient of several awards. In 2011 he was named one of 25 Transformational Canadians by The Globe and Mail.

Heather MacLean is an internationally recognized leader in sustainable systems analysis, including life cycle assessment and its application to energy systems and vehicles. Her work has led to sustainability assessment and life cycle assessment being viewed as critical tools by industry, government and other organizations, and has guided regulations such as California’s Low Carbon Fuel Standard. MacLean is an advisor to the World Bank/World Resources Institute for Sustainable Transportation. She is a fellow of the Engineering Institute of Canada and recipient of the Canada Mortgage and Housing Corporation Excellence in Education Award for Promotion of Sustainable Practices.

Wei Yu has made highly influential contributions to the field of information theory and communication engineering. His research addresses fundamental limits of information transmission in communication networks. Yu proposed dynamic spectrum management methods that have been used in millions of digital subscriber lines worldwide and also contributed significantly to the capacity analysis and optimization techniques for multiuser multiple-input multiple-output (MIMO) wireless communication channels, which are widely used in cellular networks. Professor Yu is an IEEE fellow, recipient of the NSERC E.W.R. Steacie Memorial Fellowship, and a Thompson Reuters Highly Cited Researcher.

Perry Adebar has made important contributions to the profession and practice of engineering in Canada. An award-winning educator, he is known for presenting a strong connection between theory and engineering practice, and his views are highly respected by industry. He is head of UBC Civil Engineering, and was previously associate dean of Applied Science at UBC. His research has had a direct impact on the seismic design of high-rise concrete buildings in Canada. Professor Adebar has provided engineering advice to several consulting engineering firms. He is a director of the Structural Engineers of B.C. and a member of the Canada TF-1 HUSAR Team.

Mark Hundert is a pioneer in the application of industrial engineering and operations research practices in order to improve the delivery of health care in Canada. He has helped to introduce principles and methodologies to improve the efficiency and effectiveness of our hospitals and other health care organizations. Among his many contributions in this field, Hundert spearheaded the development of a national database benchmarking the efficiency and quality of care in Canadian hospitals, which has been an essential tool in identifying and addressing areas needing improvement in the Canadian health care system. He received the Ontario Professional Engineers Management Medal in 2008.

A leading authority on microwave heating for metallurgical applications, Christopher Pickles has been a pioneer in the development of microwaves for processing ores, precious metal residues, and waste materials. Other major contributions include the use of extended arc plasma reactors for the treatment of electric furnace dusts and generation of ferro-alloys. Professor Pickles has presented short courses for industry, mentored close to 70 researchers, published over 170 papers, coedited five conference volumes and coauthored a textbook on Chemical Metallurgy. He is a fellow of the Canadian Institute of Mining, Metallurgy and Petroleum and has won national awards.

John Young has been eminently successful in the generation and application of new knowledge associated with primary steelmaking operations. He has provided exceptional engineering leadership in simulation modelling and commissioning of numerous steelmaking plants within Canada and abroad. He has coauthored a textbook entitled “Metallurgical Plant Design” and made significant contributions to the training of engineers in industry, as well as engineering students at both McGill and U of T, where he serves as an adjunct lecturer and instructor for MSE 450: Plant Design for Materials Process Industries. Throughout his career, Young has been an excellent ambassador for the engineering profession. He has received a number of high profile awards from AIME’s Iron and Steel Society.

Originally appeared on U of T Engineering News by Carolyn Farell | Posted on June 27th, 2017


New partnership establishes a Canadian teaching city for engineering students

Optimizing traffic flow between the City of Oshawa, at right, and Toronto, lower left, is one challenge that Master of Engineering students in the Cities Engineering and Management program at U of T will study in the newly established ‘teaching city.’ (Image: Google Maps)

Medical doctors learn in immersive teaching hospitals — and now U of T Engineering students will have their own immersive learning opportunities within a real-life teaching city. Later this year, the City of Oshawa will become Canada’s first-ever living laboratory for urban research, allowing students to probe complex municipal issues and test practical solutions for the future.The University of Toronto’s Faculty of Applied Science & Engineering is teaming up with the Canadian Urban Institute, the University of Ontario Institute of Technology, Durham College and the City of Oshawa to realize this first-of-its-kind partnership. As a ‘teaching municipality,’ Oshawa will connect engineering students with city staff, testing new technologies and methods on the ground and in real time.

“This is a new era for engineering education,” says Professor Brent Sleep, chair of the Department of Civil Engineering. “With this innovative partnership, through internships and research opportunities U of T Engineering students, including students in the Master of Engineering in Cities Engineering and Management (MEngCEM) program, will study and resolve real-life problems in today’s urban setting.”

A memorandum of understanding between the partners was signed June 5, 2017 at the Arts Resource Centre in downtown Oshawa. The coalition continues to invite participation from a variety of industry partners, which will expand the potential application areas for innovations studied in the city, including market-focused solutions for commercialization.

Moving beyond textbooks and laboratories, this dynamic urban lab will bring students and researchers closer to emerging trends. Potential areas for exploration could extend from current U of T studies in intelligent transportation systems, sustainable urban infrastructure including air pollution and health, drinking water systems and building sciences. The partnership will also seek to deepen evidence-based policy development and research-driven innovations from U of T MEngCEM students.

“Access to real-time urban data and systems will provide significant insights and transformative opportunities to assess problems and identify scalable and sustainable solutions for tomorrow,” says Sleep. “Learning outside lecture halls encourages students to interact with a multitude of stakeholders, learning to support and interact with policymakers, residents and their future colleagues.”

As urbanization intensifies the pressure on cities — from increased demand on utilities, to greater need for emergency services and schools, to urgent need for traffic and transit upgrades — a new generation of highly trained engineering talent will guide and manage new technologies, policies and practices to meet the needs of citizens across Canada and around the globe. The first student cohort will begin studying this experiential teaching municipality in 2018.

Daniel Posen: new CivE faculty explores the relationship between public policy and the environment

In an increasingly interconnected and interdisciplinary world, the Department of Civil Engineering was pleased to welcome Prof. I. Daniel Posen as a new faculty member in January 2017.

We asked him a couple questions about his new appointment:

Could you explain the focus and (potential) impact of your research?

I usually describe my research as ‘system-scale environmental sustainability analysis,’ which basically means that I’m trying to understand the big picture when it comes to how both public and private decisions impact the environment. A key goal of this work is to help government and industry tailor their policies and investment decisions to improve environmental outcomes. Much of my work focuses on prioritizing greenhouse gas reduction strategies, especially when choosing among competing uses for biomass (energy/materials derived from plants), and within the urban environment. I also plan to incorporate a broader range of environmental metrics (e.g., related to air & water quality or resource use) to provide a holistic evaluation of these systems, and others.

Your academic background is unique, can you explain why your interests have varied from chemistry to economics to public policy to engineering?

There is actually a common theme linking my degrees together: sustainability. The research I do is inherently interdisciplinary, using tools from natural sciences, engineering, economics, and policy analysis. There is a lot of important work being done in each of these disciplines, and one of the biggest challenges is about how to link these different areas together to design systems with the best social and environmental outcomes. This is a key goal of my work, so it has been a real asset to have a background in these different fields.

Why did you choose U of T?

I’m originally from Toronto, and am passionate about doing research that benefits both Canada and the world. U of T is a top university in Canada, which has both a rich set of colleagues with whom I can collaborate, and allows me to work with some of the best students. The city of Toronto is also a great place to live and is an excellent environment for researching urban-scale sustainability.


What are you most looking forward to in your new position?

I really do love all aspects of the job: research, teaching, engaging with young researchers, being in an academic environment, etc. One thing that’s particularly exciting about being new here is the prospect of building new collaborations and starting to work with a whole new group of students and colleagues.

As a new professor, what one piece of advice would you give to new students?

For undergrads, I’d say it’s important to focus on key foundational skills in engineering, math, statistics and the like, but don’t neglect the broader picture – take advantage of your elective courses and make sure to step outside your field once in a while. For graduate students, likewise, start thinking early on about what skills you want to develop, and put in place a plan to develop them. At the same time, don’t fall into the temptation of only using those skills – make sure the tools you’re using fit the problem you want to answer.

What do you hope to accomplish in your new position/during your time at U of T Engineering?

Like most professors, I’d say my mission is two-fold: make an impact with my research, and train the next generation of practitioners and scholars. In my case, that means I hope to help craft sensible environmental strategies at the local, national and global scale, while training our engineering graduates to think carefully and holistically about how they influence the systems around us.

Infrastructure’s impact: How public transit investments affect our environment

Professor Shoshanna Saxe (CivE) analyses the environmental and social impact of large public transit infrastructure projects, informing policymakers as they decide which investments to make. (Photo: Tyler Irving)
Professor Shoshanna Saxe (CivE) analyses the environmental and social impact of large public transit infrastructure projects, informing policymakers as they decide which investments to make. (Photo: Tyler Irving)

Professor Shoshanna Saxe (CivE) analyses the environmental and social impact of large public transit infrastructure projects, equipping policymakers with data as they decide which investments to make. (Photo: Tyler Irving)


This story originally appeared at U of T Engineering News

The benefits of building public transit include reducing greenhouse gas emissions, relieving traffic congestion and expanding a growing city. Yet each transit project is unique, and predicting its future effectiveness is difficult. Professor Shoshanna Saxe (CivE) crunches the numbers on existing infrastructure to provide key decision-makers with a ‘reality check’ on the environmental and social impacts of today’s transit investments.

“Engineers usually aren’t involved in policymaking, and policymakers usually aren’t involved in engineering,” says Saxe. “I’m trying to bridge that gap.”

Saxe joined U of T Engineering in August 2016. Before completing her PhD at the University of Cambridge, she spent three years at a major consulting engineering firm in Toronto, working on projects such as the Eglinton Crosstown transit line and the Toronto-York Spadina subway extension.

“I love design, it’s amazing,” she says. “However, when you’re building things that people are going to use, you have to stay well within the limits of what you know for sure. I was curious about questions that we didn’t already know the answers to.”

During her PhD, Saxe conducted a detailed analysis of the London Underground’s extension of the Jubilee Line, completed in 1999. She gathered data on the greenhouse gases produced during construction and operation of the line, then used transit and land-use surveys to estimate the reduction of greenhouse gas emissions attributable to people using the line and living near it. By combining the two, she could calculate the net environmental benefit of that transit project.

“It turned out to be a bit of a mixed bag,” she says. “If you make some optimistic assumptions, you could say that it broke even in terms of greenhouse gas emissions around 2012 or 2013. If you are more pessimistic, you’re looking at a greenhouse gas payback of twice as long.”

Saxe says that the Jubilee Line extension sees approximately 175 million trips per year. On projects where ridership is low, the environmental payback period can be much longer. Saxe also studied the Sheppard subway line in Toronto, and found that with a much lower ridership it initially struggled to provide greenhouse gas savings. Over time, the Sheppard Subway Line has benefited from the decreasing emissions associated with electricity in Ontario. The results of the Sheppard Subway study were recently published in the journal Transportation Research Part D: Transport and Environment.

“If you’re at Don Mills station, and you want to go north, east, or even southeast, the network doesn’t serve you yet,” she says. “We still see people from that area driving 70 per cent of the time, so unfortunately there’s just a lot less opportunity for savings.”

Saxe says that her dream project would be to follow a major piece of infrastructure, such as a new transit line, from its conception through construction and use for 20 or 30 years — essentially throughout her career.

“I want to answer questions like: why did we originally build it, how did we originally build it, how did it perform over its lifetime, how did we maintain it and what did it need?” she says. “If we know how our present decision-making affects things decades from now, we can make better decisions.”

Concrete check-up: Fae Azhari develops diagnostics for critical infrastructure

Professor Fae Azhari (MIE, CivE) holds a sample of the self-sensing concrete she designed. Her work helps monitor the structural health of crucial infrastructure such as bridges, roads and hydroelectric dams. (Credit: Roberta Baker)

This story originally appeared on U of T Engineering News.

Canada will spend $125 billion on infrastructure maintenance and expansion in the next 10 years. Professor Fae Azhari (MIE, CivE) is helping stretch those dollars farther by keeping our buildings, bridges, roads and reservoirs safe and structurally sound for longer.

Azhari’s research focuses on structural health monitoring. Just as you visit the doctor for periodic check-ups, structures need their health checked too — but instead of blood tests and heart rate measurements, engineers usually perform visual inspections and spot-checks with sensors and instruments.

“The problem with visual inspections is that they’re pretty subjective, and with periodic monitoring, you can miss certain events or failures,” says Azhari. “Now we’re moving toward continuous monitoring by incorporating permanent sensors on important structures to get real-time data.”

Degradation or damage suffered between inspections can have catastrophic consequences. In June 2013, a rail bridge just outside of downtown Calgary partially collapsed as a train was passing over it. The train, carrying flammable and toxic liquids, derailed. Emergency measures were taken to prevent the railcars from falling into the Bow River, which was running high with summer floodwater. The Transportation Safety Board of Canada determined that floodwaters had eroded the soil around the bridge’s foundations, causing the collapse. This loss of sediment from around foundational supports is called scour.

“Believe it or not, this happens very often, especially in North America and some Asian countries,” says Azhari. “Scour is a huge problem.”

For her PhD research at the University of California, Davis, Azhari tackled scour from a new angle: she took commercially available sensors that measure dissolved oxygen, typically used for agriculture or biological applications, and used them for sensing scour. Azhari’s design was to attach a number of oxygen sensors at increasing depths along the buried length of the bridge pier. If the pier is properly buried, the dissolved oxygen levels detected by the sensors should be very low — but as scour erodes the sediments and exposes the sensors to flowing water, the dissolved oxygen levels rise. As scour progresses, more and more sensors become exposed, indicating how badly scour is threatening the bridge’s structural integrity.

She has also worked on concrete sensors, including a design that integrates conductive carbon fibers and nanotubes into concrete, making it a self-sensing material. Measuring the resistance across the material reveals the stresses and strains on it. “This technology is well-proven in the laboratory, but moving it to the field is a big challenge,” says Azhari.

As she builds her research enterprise, Azhari plans to collaborate across disciplines and with key partners who could benefit from her sensors, as well her analysis and insight into the data that comes from them. “Transportation infrastructure, utilities, dams, power plants, wind turbines — basically any engineering system — needs maintenance and monitoring,” she says.

“It’s very important to get these sensors from prototype to implementation, and I want to work on that.”