Heat, housing and health: Marianne Touchie and the complexity of multi-unit residential buildings

Professor Marianne Touchie (CivE, MIE) is working with Toronto Community Housing and The Atmospheric Fund to better understand how changes to energy use affect indoor environmental quality in multi-unit residential buildings. Toronto Public Health is collaborating to use their data to inform policy. (Photo: Kevin Soobrian)

Professor Marianne Touchie (CivE, MIE) is working with Toronto Community Housing and The Atmospheric Fund to better understand how changes to energy use affect indoor environmental quality in multi-unit residential buildings. Toronto Public Health is collaborating to use their data to inform policy. (Photo: Kevin Soobrian)

Professor Marianne Touchie (CivE, MIE) is working with Toronto Community Housing and The Atmospheric Fund to better understand how changes to energy use affect indoor environmental quality in multi-unit residential buildings. Toronto Public Health is collaborating to use their data to inform policy. (Photo: Kevin Soobrian)


This story originally appeared at U of T Engineering News

This story is a part of a  five-part #RisingStars series, highlighting the work of our early-career professors.

In cities from coast to coast, condominium towers are being constructed at an unprecedented rate, with 30,000 new units added in 2015 to the Toronto market alone. This is driven both by recent advances in the design, engineering and construction of tall buildings, and a stark increase in demand for these multi-unit residential buildings (MURBs). “More people are moving downtown,” says Professor Marianne Touchie (CivE, MIE). “There’s very limited space, so we need high-density housing options and MURBs provide that.”

With a background in building science, Touchie studies the relationships between energy efficiency and indoor environment quality parameters, such as thermal comfort, in these high-density buildings. In Toronto, one of the largest suppliers of MURBs is Toronto Community Housing Corporation (TCHC), which owns 50 million square feet of residential space and houses 110,000 residents. Many of these are older buildings without air conditioning.

“A lot of these buildings rely on ventilation through the building envelope, which is not terribly effective. At the same time, we need to reduce our energy consumption and energy use,” she says. “But reducing energy usage has implications for occupants, and that’s what I’m interested in studying.”

Touchie is currently collaborating with The Atmospheric Fund (formerly the Toronto Atmospheric Fund) on a large research project—one that she has been involved with since her role as their Building Research Manager from 2014 to 2015. She and her colleagues are collecting data on energy consumption, temperature, humidity and carbon dioxide concentration in more than 70 apartments spanning seven different TCHC buildings.

“It’s probably the most comprehensive MURB monitoring project in North America, if not the world,” says Touchie.

They are also working with Professor Jeffrey Siegel (CivE), who is examining concentrations of formaldehyde, particulate matter and, through a partnership with Health Canada, radon concentrations. Touchie says that collaborations, such as those with TCHC, The Atmospheric Fund and Siegel, are critical to creating a comprehensive picture of the MURBs she studies. “Buildings are so complex,” says Touchie. “I have training in one particular area, but I’m not an indoor air quality expert. When we make changes from an energy perspective to the ventilation system, or the heating and cooling system, it has an influence on the air quality. Working with other experts, like Professor Siegel, we can gather data on all sides.”

Touchie’s findings with The Atmospheric Fund and TCHC have drawn the interest of Toronto Public Health. The agency is interested in the health impact of extreme heat, and the study has found that these TCHC buildings are often overheated, especially in the summer.

“Extreme heat is a health problem, especially for the most vulnerable populations,” says Sarah Gingrich, a Health Policy Specialist at Toronto Public Health. Very young children, the elderly and people with illnesses or taking certain medications are most at risk. “This work is providing evidence that excessive heat is a problem in older apartment buildings in Toronto. The research is showing that although the temperature cools down at night outside, in these buildings it rises during the day and they stay hot all night long.”

Touchie and her collaborators are finding that a major culprit for the inefficient heating and cooling performance is uncontrolled air leakage. These leaks often occur around windows, doors, exhaust fans and elevator shafts. But inefficiencies aren’t just a building issue: she adds that “because people can do whatever they want in their own homes, like open and close their windows, MURBs combine the complexity of high-rise buildings with the occupant wild card,” which makes managing the indoor environment even trickier.

“The study provides valuable information on Toronto apartment buildings that will help to inform policy development,” says Toronto Public Health’s Gingrich. “It fills a very important gap by providing up-to-date data that highlights some of the challenges in this type of building, and points to potential solutions.”

Next, Touchie hopes to expand her research to newer condos, where data is even scarcer. “They’re going up so quickly, and we really have no information about the quality of the indoor environment or their energy performance,” she says. “I am very curious whether their energy consumption matches the performance level promised at the design stage.”

Two U of T Engineering researchers awarded Canada Research Chairs

In the latest round of Canada Research Chair announcments, Engineering professors Penney Gilbert (left) and Marianne Hatzopoulou (right) were named as Tier 2 chairholders. The CRC program aims to help Canada attract and retain research leaders in engineering and the natural sciences, health sciences, humanities and social sciences.
This story originally appeared on U of T Engineering News.
In the latest round of Canada Research Chair announcments, Engineering professors Penney Gilbert (left) and Marianne Hatzopoulou (right) were named as Tier 2 chairholders. The CRC program aims to help Canada attract and retain research leaders in engineering and the natural sciences, health sciences, humanities and social sciences.

In the latest round of Canada Research Chair announcments, Engineering professors Penney Gilbert (left) and Marianne Hatzopoulou (right) were named as Tier 2 chairholders. The CRC program aims to help Canada attract and retain research leaders in engineering and the natural sciences, health sciences, humanities and social sciences.

Professors Penney Gilbert (IBBME) and Marianne Hatzopoulou (CivE) have been named Tier 2 Canada Research Chairs (CRCs) in an announcement made today by federal science minister Kirsty Duncan at the University of Toronto Factor-Inwentash Faculty of Social Work.

The two U of T Engineering researchers are among the 25 U of T faculty members to receive CRC appointments. They join 216 current chairholders across the University of Toronto.

“I would like to extend my heartfelt  congratulations to the new and renewed Canada Research Chairs. The Government  of Canada is proud to support talented researchers whose hard work will improve  our scientific understanding and strengthen Canada’s reputation for research  excellence,” said Minister Duncan, who is herself a U of T alumna. “The Chairs’ efforts will also provide us with the evidence needed to inform decisions that help us build a vibrant society and a strong middle class.”

Professor Hatzopoulou holds the CRC in Transportation and Air Quality for her research into how emissions are generated by on-road vehicles, dispersed in urban environments and who is exposed. Through her collaborative work with epidemiologists and health scientists, Hatzopoulou is working to better understand how traffic patterns, road design and characteristics of the built environment can be modified to improve urban air quality and help vulnerable individuals reduce their exposure.

“Receiving this appointment is an opportunity to advance research in an area of growing concern for rapidly expanding world cities,” said Hatzopoulou. “It will also help provide scientific evidence for the often controversial decisions on urban transportation system expansions and their effects on the air we breathe.”

“I am very honoured by this appointment, and for the recognition of my research team’s efforts toward unlocking the secrets that permit the human body to heal itself,” said Gilbert, who was named the CRC in Endogenous Repair. She received the appointment for her research into the cues that “wake up” muscle stem cells and direct them to repair skeletal damage. Along with her team, Gilbert hopes to decipher these cues and inform the development of new drugs, therapies and treatments that restore strength to muscles that are wasting as a result of aging or disease.

“We’re extremely proud of the leadership and research excellence demonstrated by Professors Hatzopoulou and Gilbert, and I am pleased to congratulate them on this recognition,” said Professor David Sinton (MIE), interim vice-dean, research for the Faculty of Applied Science & Engineering. “We’re also grateful for this investment in our Faculty as our researchers continue to work across disciplines to address the world’s most pressing challenges.”

The CRC program was launched in 2000 to help the country attract and retain research leaders in engineering and the natural sciences, health sciences, humanities and social sciences. Tier 1 Chairs last for seven years, and recognize outstanding researchers acknowledged by their peers as world leaders in their fields. Tier 2 Chairs are for exceptional emerging researchers and last for five years.

U of T Engineering student team competes at Green Energy Challenge finals

The University of Toronto student chapter of the Canadian/National Electrical Contractors Association (CECA/NECA) is one of three finalists to compete at the 2016 Green Energy Challenge in Boston this weekend.

The students from U of T Engineering are the only Canadian team, and will compete against teams from Iowa State and the University of Washington. The final three were selected from 14 proposals.

“We selected UTS because it is an aging building that uses older lighting systems and could benefit greatly from an upgrade,” said Dmitri Naoumov (CivE 1T5+PEY), the team’s project manager. “The school is also planning a major renovation, so our proposal could help to inform the energy needs and improvements.”The U of T team partnered with University of Toronto Schools (UTS), a Grade 7 to 12 university preparatory school in downtown Toronto, to design an energy efficiency upgrade, including a small-scale photovoltaic system that would serve as a teaching and learning tool for students.

Competing alongside Naoumov are Matheos Tsiaras (CivE 1T5+PEY), Ernesto Diaz Lozano Patiño (CivE 1T5+PEY, MASc Candidate), Greg Peniuk (CivE Year 4 + PEY), Arthur Leung(ChemE Year 4), Claire Gao (ChemE Year 4 + PEY), Mackenzie De Carle (CivE Year 4) and Nataliya Pekar (CivE Year 4).

“The lighting in the rooms was below the recommended levels for classroom learning,” said Naoumov. “By increasing the light in classrooms, we are helping to create an environment more conducive for students and teachers.”Their design includes detailed technical solutions for classroom lighting retrofit, integrated window treatments and the design of a rooftop 4kW photovoltaic solar array, which all meet the unique needs of the building and the climate in Toronto. By upgrading the lighting system to use lower wattage bulbs, using occupancy sensors and installing light shelves that regulate daylight, the team determined that UTS could reduce its annual energy consumption by up to 125 MWh, or enough to light 10 typical homes.

UTS is eager to incorporate the students’ energy efficient and technologically savvy infrastructure into its daily operations. Because many Toronto public school buildings are showing their age, this could serve as a model for future upgrades across the city.

“UTS is an Eco School and we aim to reduce our environmental footprint and energy costs,” said Philip Marsh, vice-principal of UTS. “The team’s analysis and understanding of how to improve the efficiency of our building was impressive. We see the proposed roof solar array as a viable design option for the future.”

Competing for the first time at the Green Energy Challenge in 2015, the U of T team placed fourth with its lighting and back-up power retrofit proposal for the Good Sheppard Ministries shelter in downtown Toronto. Although the project did not win them a spot at the convention, Good Sheppard Ministries is currently implementing their design throughout its facility.

CECA/NECA brings together electrical contractors across the country to share experience and advice. Established in 2014, the U of T chapter extension is the first of its kind in Canada. Its goal is to bridge the gap between contracting and engineering and engage students with first-hand, applied experience. In addition to pitting their design savvy against groups at other North American universities, the group hosts networking and social events and connects students with scholarship and job opportunities.

How efficient is your home?

Would you like to know more about the air quality in your home?

air-filtration-study
We are undertaking a research project to explore the impact of high-efficiency filtration on particle concentrations in residences. Funded by the American Society of Heating, Refrigeration and Air Conditioning Engineers (ASHRAE), we will be conducting yearlong measurements in 18 Toronto residences in order to develop a complete picture of how filters influence indoor air quality in residences. This project is unique because of the depth and the duration of the measurements and it should provide considerable details about the benefits and costs, as well as the real-world performance of filters in residences.

In order to complete this work, we need to recruit homes that are willing to participate. The benefits for the research subjects include free filters for a year, a very detailed report on particle concentrations in your home, and cash incentive ($20 after completion of first measurement site-visit, $50 after six-months of participation in the project, and $80 upon completion of the project).

The criteria that we need from all test homes are:

  • A central forced air conditioning system that is used for both heating and air conditioning and that uses a standard size filter and that is accessible for all testing.
  • Within a 30-minute commuting distance from the University of Toronto St. George campus.
  • Ability to access the house (and furnace area specifically) for field tests nine times over the course of a year (more details below).
  • Allow for the installation of monitoring equipment for the duration of the study.
  • Have no current plan to change the furnace/air-conditioning system over the course of the year.

This will be a field-intensive project which means that we are conducting many measurements including a physical characterization of the house and the heating and cooling system, continuous monitoring of furnace operating run-time and particulate matter concentrations, and periodic monitoring of carbon dioxide levels, size-resolved particle concentrations, filtration efficiency, and other related parameters. We will also analyze dust collected on study home filters to better assess filtration performance and its relationship to exposure.

All houses that are accepted into this program will be tested nine times (every 1.5 months) over the course of the year. The initial visit will be approximately 4-6 hours in length and subsequent visits will be shorter. A few of the tests will involve leaving equipment overnight and returning to pick it up the next day. None of the equipment or testing will affect the operation of your house or changes in normal activities with the potential exception of additional operation of the furnace blower (not the furnace itself, just the fan that moves air). All visits will be done by myself and/or trained graduate students.
If you meet the criteria above and are potentially interested in participating, please contact Masih Alavy at masih.alavy@mail.utoronto.ca or 416-300-7325 and indicate your interest. We will schedule a short visit where we can check the suitability of your system/house for the project, show you the equipment that we will deploying, discuss the schedule in more detail, and answer any of your questions. Once we have a list of candidate homes, the project monitoring subcommittee at  ASHRAE will approve the list and we anticipate beginning testing in December 2016 or January 2017. Please don’t hesitate to contact me at jeffrey.siegel@utoronto.ca or 416-978-7975 if you have any questions.